The CyCab: Bayesian Navigation on Sensory–Motor Trajectories

  • Cédric Pradalier
  • Pierre Bessière
Part of the Springer Tracts in Advanced Robotics book series (STAR, volume 46)


Autonomous navigation of a mobile robot is a widely studied problem in the robotics community. Most robots designed for this task are equipped with onboard sensor(s) to perceive the external world (sonars, laser telemeters, camera). Two main approaches to autonomous navigation have been proposed: reactive navigation, where the robot uses only its current perceptions to move and explore without colliding (e.g. Arkin (1998) or Bonasso et al. (1995)), and servoed navigation, in which the robot is given a preplanned reference trajectory and uses some closed-loop control law to follow it (e.g. Laumond et al. (1989) or Lamiraux et al. (1999)). In servoed problems, two classes of approaches can again be separated: state-space tracking (e.g. Hermosillo et al. (2003b,a)) and perception- space tracking (e.g. Malis et al. (2001) or Chaumette (1994)).


Mobile Robot Tracking Error Obstacle Avoidance Reference Trajectory Sensor Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arkin, R.: Reactive robotic systems. In: The handbook of brain theory and neural networks, pp. 793–796 (1998)Google Scholar
  2. Bonasso, R.P., Kortenkamp, D., Miller, D., Slack, M.: Experiences with an architecture for intelligent reactive agents. In: Proc. of the Int. Joint Conf. on Artificial Intelligence, August 1995, Montreal (CA) (1995)Google Scholar
  3. Chaumette, F.: Visual servoing using image features defined upon geometrical primitives. In: Proc. of the Int. Conf. on Decision and Control, December 1994, Lake Buena Vista, FL (US) (1994)Google Scholar
  4. Fox, D., Burgard, W., Thrun, S.: The dynamic window approach to collision avoidance. IEEE Robotics and Automation Magazine 4(1), 23–33 (1997)CrossRefGoogle Scholar
  5. Fraichard, T., Garnier, P.: Fuzzy control to drive car-like vehicles. Robotics and Autonomous Systems 34(1), 1–22 (2000)CrossRefGoogle Scholar
  6. Hermosillo, J., Pradalier, C., Sekhavat, S., Laugier, C.: Experimental issues from map building to trajectory execution for a bi-steerable car. In: Proc. of the IEEE Int. Conf. on Advanced Robotics, Coimbra (PT) July (2003a)Google Scholar
  7. Hermosillo, J., Pradalier, C., Sekhavat, S., Laugier, C., Baille, G.: Towards motion autonomy of a bi-steerable car: Experimental issues from map-building to trajectory execution. In: Proc. of the IEEE Int. Conf. on Robotics and Automation, Taipei (TW) May (2003b)Google Scholar
  8. Klein, L.A.: Sensor and Data Fusion Concepts and Applications. In: Society of Photo-Optical Instrumentation Engineers (SPIE), Bellingham, WA, USA (1999)Google Scholar
  9. Lamiraux, F., Sekhavat, S., Laumond, J.-P.: Motion planning and control for hilare pulling a trailer. In: IEEE Trans. Robotics and Automation (1999)Google Scholar
  10. Laumond, J.-P., Siméon, T., Chatila, R., Giralt, G.: Trajectory planning and motion control for mobile robts. In: Boissonnat, J.-D., Laumond, J.-P. (eds.) Geometry and Robotics. LNCS, vol. 391, pp. 133–149. Springer, Heidelberg (1989)Google Scholar
  11. Lerner, U., Parr, R., Koller, D., Biswas, G.: Bayesian fault detection and diagnosis in dynamic systems. In: Proc. of the Nat. Conf. on Artificial Intelligence, August 2000, Austin, TX (US) (2000)Google Scholar
  12. Malis, E., Morel, G., Chaumette, F.: Robot control using disparate multiple sensors. Int. Journal of Robotics Research 20(5), 364–377 (2001)CrossRefGoogle Scholar
  13. Minguez, J., Montano, L., Santos-Victor, J.: Reactive navigation for non-holonomic robots using the ego kinematic space. In: Proc. of the IEEE Int. Conf. on Robotics and Automation, May 2002, Washington, DC (US) (2002)Google Scholar
  14. Murphy, K.P.: Switching kalman filters. Technical report, U. C. Berkeley (1998)Google Scholar
  15. Pradalier, C.: Intentional Navigation of a mobile robot. Thèse de doctorat, Inst. Nat. Polytechnique de Grenoble (December 2003)Google Scholar
  16. Pradalier, C., Hermosillo, J., Koike, C., Braillon, C., Bessière, P., Laugier, C.: Safe and autonomous navigation for a car-like robot among pedestrian. In: IARP Int. Workshop on Service, Assistive and Personal Robots, October 2003, Madrid (ES) (2003)Google Scholar
  17. Pradalier, C., Hermosillo, J., Koike, C., Braillon, C., Bessière, P., Laugier, C.: The cycab: a car-like robot navigating autonomously and safely among pedestrians. Robotics and Autonomous Systems 50(1), 51–68 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Cédric Pradalier
    • 1
  • Pierre Bessière
    • 2
  1. 1.CSIRO ICT Centre 
  2. 2.CNRS - Grenoble Université 

Personalised recommendations