Bayesian Modelling of Perception of Structure from Motion

  • Francis Colas
  • Pierre Bessière
  • Jacques Droulez
  • Mark Wexler
Part of the Springer Tracts in Advanced Robotics book series (STAR, volume 46)


We use multiple sensory modalities to perceive our environment. One of these is optic flow, the displacement and deformation of the image on the retina. It is generally caused by a relative motion between an observer and the objects in the visual scene. As optic flow depends largely on three-dimensional (3D ) shapes and motions, it can be used to extract structure from motion (the sfm problem). Motion parallax and the kinetic depth effect are special cases of this phenomenon, noticed by Von Helmholtz (1867), and experimentally quantified by Wallach and O’Connell (1953).


Bayesian Model Angular Speed Object Plane Reversal Rate Motion Parallax 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Cornilleau-Pérès, V., Wexler, M., Droulez, J., Marin, E., Miège, C., Bourdoncle, B.: Visual perception of planar orientation: dominance of static depth cues over motion cues. Vision Research 42, 1403–1412 (2002)CrossRefGoogle Scholar
  2. Dijkstra, T., Cornilleau-Pérès, V., Gielen, C., Droulez, J.: Perception of three-dimensional shape from ego- and object-motion: comparison between small- and large-field stimuli. Vision Research 35(4), 453–462 (1995)CrossRefGoogle Scholar
  3. Domini, F., Caudek, C.: 3-d structure perceived from dynamic information: a new theory. Trends in Cognitive Sciences 7(10), 444–449 (2003)CrossRefGoogle Scholar
  4. Domini, F., Caudek, C.: Perceiving surface slant from deformation of optic flow. J. Exp. Psychol Hum. Percept Perform 25(2), 426–444 (1999)CrossRefGoogle Scholar
  5. Ernst, M., Banks, M.: Humans integrate visual and haptic information in a statistically optimal fashion. Nature 415(6870), 429–433 (2002)CrossRefGoogle Scholar
  6. Koenderik, J.: Optic flow. Vision Research 26(1), 161–179 (1986)CrossRefGoogle Scholar
  7. Landy, M., Maloney, L., Johnston, E., Young, M.: Measurement and modeling of depth cue combination: in defense of weak fusion. Vision Research 35, 389–412 (1995)CrossRefGoogle Scholar
  8. Lebeltel, O., Bessière, P., Diard, J., Mazer, E.: Bayesian robot programming. Advanced Robotics 16(1), 49–79 (2004), Google Scholar
  9. Longuet-Higgins, H.: The visual ambiguity of a moving plane. In: Proceedings of the Royal Society of London (B, Biological Sciences), vol. 223, pp. 165–175 (1984)Google Scholar
  10. Mayhew, J., Longuet-Higgins, H.: A computational model of binoculard depth perception. Nature 297(5865), 376–378 (1982)CrossRefGoogle Scholar
  11. Naji, J., Freeman, T.: Perceiving depth order during pursuit eye movement. Vision Research 44, 3025–3034 (2004)CrossRefGoogle Scholar
  12. Rogers, B., Graham, M.: Motion parallax as an independent cue for depth perception. Perception 8, 125–134 (1979)CrossRefGoogle Scholar
  13. Rogers, B., Rogers, S.: Visual and nonvisual information disambiguate surfaces specified by motion parallax. Perception and Psychophysics 52, 446–452 (1992)Google Scholar
  14. Todd, J., Bressan, P.: The perception of 3-dimensional affine structure from minimal apparent motion sequences. Perception and Psychophysics 45(5), 419–430 (1990)Google Scholar
  15. Todd, J., Norman, J.: The visual perception of smoothly curved surfaces from minimal apparent motion sequences. Perception and Psychophysics 50(6), 509–523 (1991)Google Scholar
  16. Ullman, S.: The interpretation of visual motion. MIT Press, Cambridge (1979)Google Scholar
  17. Van Boxtel, J., Wexler, M., Droulez, J.: Perception of plane orientation from self-generated and passively observed optic flow. Journal of Vision 3(5), 318–332 (2003), CrossRefGoogle Scholar
  18. Von Helmholtz, H.: Handbuch der Physiologischen Optik. Voss, Hamburg (1867)Google Scholar
  19. Wallach, H., O’Connell, D.: The kinetic depth effect. Journal of Experimental Psychology 45, 205–217 (1953)CrossRefGoogle Scholar
  20. Wallach, H., Stanton, J., Becker, D.: The compensation for movement-produced changes in object orientation. Perception and Psychophysics 15, 339–343 (1974)Google Scholar
  21. Wexler, M.: Voluntary head movement and allocentric perception of space. Psychological Science 14, 340–346 (2003)CrossRefGoogle Scholar
  22. Wexler, M., Lamouret, I., Droulez, J.: The stationarity hypothesis: an allocentric criterion in visual perception. Vision Research 41, 3023–3037 (2001)CrossRefGoogle Scholar
  23. Wexler, M., Panerai, F., Lamouret, I., Droulez, J.: Self-motion and the perception of stationary objects. Nature 409, 85–88 (2001)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Francis Colas
    • 1
  • Pierre Bessière
    • 2
  • Jacques Droulez
    • 3
  • Mark Wexler
    • 3
  1. 1.INRIA Rhônes-Alpes - E-Motion 
  2. 2.CNRS - Grenoble Université 
  3. 3.Collège de France - LPPA 

Personalised recommendations