Bayesian Modelling of Visuo-Vestibular Interactions

  • Jean Laurens
  • Jacques Droulez
Part of the Springer Tracts in Advanced Robotics book series (STAR, volume 46)


In addition to the five senses usually described, vertebrate species possess a sensory organ that detects motion of the head. This organ is the vestibular system, located in the inner ear. Motion information collected by the vestibular system is crucial for equilibrium. It also contributes to stabilizing the gaze in space during head movements. Motion information provided by the vestibular system generates compensatory eye movement, a phenomenon called the Vestibulo-Ocular Reflex (VOR). The importance of this function is illustrated by the following example (from Guedry (1974)): you can look at the lines on your hand and shake your head at the same time. The VOR provides efficient gaze stabilization in this condition. In contrast, if you shake your hand, looking at the lines becomes impossible.


Motion Estimate Semicircular Canal Visual Stimulation Vestibular System Linear Acceleration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Angelaki, D.E.: Three-dimensional organization of otolith-ocular reflexes in rhesus monkeys. iii. responses to translation. J. Neurophysiol 80(2), 680–695 (1998)Google Scholar
  2. Angelaki, D.E., Hess, B.J., Arai, Y., Suzuki, J.: Adaptation of primate vestibuloocular reflex to altered peripheral vestibular inputs. i. frequency-specific recovery of horizontal vor after inactivation of the lateral semicircular canals. J. Neurophysiol 76(5), 2941–2953 (1996)Google Scholar
  3. Angelaki, D.E., Merfeld, D.M., Hess, B.J.: Low-frequency otolith and semicircular canal interactions after canal inactivation. Exp. Brain Res. 132(4), 539–549 (2000)CrossRefGoogle Scholar
  4. Angelaki, D.E., Newlands, S.D., Dickman, J.D.: Inactivation of semicircular canals causes adaptive increases in otolith-driven tilt responses. J. Neurophysiol 87(3), 1635–1640 (2002)Google Scholar
  5. Benson, A.J., Bodin, M.A.: Interaction of linear and angular accelerations on vestibular receptors in man. Aerosp Med. 37(2), 144–154 (1966)Google Scholar
  6. Cohen, B., Matsuo, V., Raphan, T.: Quantitative analysis of the velocity characteristics of optokinetic nystagmus and optokinetic after-nystagmus. J. Physiol 270(2), 321–344 (1977)Google Scholar
  7. Dichgans, J.: Optokineticnystagmus as dependant of the retinal periphery via the vestibular nucleus. In: Baker, G., Berthoz, A. (eds.) Control of Gaze by Brain Stem Neurons, pp. 261–267. Elsevier, Amsterdam (1977)Google Scholar
  8. Glasauer, S., Merfeld, D.M.: Modeling three dimensional vestibular responses during complex motion stimulations. In: Three-dimensional kinematics of eye, head and limb movements, pp. 387–389. Harwood academic publisher (1997)Google Scholar
  9. Gray, H.: Anatomy of the Human Body. Lea, Febiger, Philadelphia (1918, 2000),
  10. Guedry, F.E.: Orientation of the rotation-axis relative to gravity: Its influence on nystagmus and the sensation of rotation. Acta Otolaryngol 60, 30–48 (1965)CrossRefGoogle Scholar
  11. Guedry, F.E.: Psychophysics of vestibular sensation. In: Kornhuber, H.H. (ed.) Handbook of Sensory Physiology, ch. 1, pp. 3–154. Springer, Berlin (1974)Google Scholar
  12. Laurens, J., Droulez, J.: Bayesian processing of vestibular information. In: Biol. Cybern, April 2007, vol. 96(4), pp. 389–404 (2007)Google Scholar
  13. Maskell, S., Gordon, N.: A tutorial on particle filters for on-line nonlinear/non-gaussian bayesian tracking. IEEE Transactions on Signal Processing 50(2), 174–188 (2002)CrossRefGoogle Scholar
  14. Mayne, R.: A system concept of the vestibular organs. In: Kornhuber, H.H. (ed.) Handbook of Sensory Physiology. Vestibular System Part 2: Psychophysics, Applied Aspects and General Interpretations, vol. VI, pp. 493–580. Springer, Berlin Heidelberg New York (1974)Google Scholar
  15. Merfeld, D.M., Zupan, L.H.: Neural processing of gravitoinertial cues in humans. iii. modeling tilt and translation responses. J. Neurophysiol 87(2), 819–833 (2002)Google Scholar
  16. Merfeld, D.M., Zupan, L., Peterka, R.J.: Humans use internal models to estimate gravity and linear acceleration. Nature 398(6728), 615–618 (1999)CrossRefGoogle Scholar
  17. Moore, S.T., Cohen, B., Raphan, T., Berthoz, A., Clément, G.: Spatial orientation of optokinetic nystagmus and ocular pursuit during orbital space flight. Exp. Brain Res. 160(1), 38–59 (2005)CrossRefGoogle Scholar
  18. Paige, G.D.: Vestibuloocular reflex and its interactions with visual following mechanisms in the squirrel monkey. J. Neurophysiol 49(1), 152–168 (1983)Google Scholar
  19. Paige, G.D., Seidman, S.H.: Characteristics of the vor in response to linear acceleration. Ann. N. Y. Acad. Sci. 871, 123–135 (1999)CrossRefGoogle Scholar
  20. Rabbitt, R.D., Boyle, R., Highstein, S.M.: Influence of surgical plugging on horizontal semicircular canal mechanics and afferent response dynamics. J. Neurophysiol. 82(2), 1033–1053 (1999)Google Scholar
  21. Raphan, T., Cohen, B.: Velocity storage and the ocular response to multidimensional vestibular stimuli. In: Berthoz, A., Jones, G.M. (eds.) Adaptative mechanisms in gaze control, pp. 123–143. Elsevier, Amsterdam (1985)Google Scholar
  22. Raphan, T., Cohen, B.: The vestibulo-ocular reflex in three dimensions. Exp. Brain Res. 145(1), 1–27 (2002)CrossRefGoogle Scholar
  23. Raphan, T., Cohen, B., Matsuo, V.: A velocity-storage mechanism responsible for optokinetic nystagmus (okn), optokinetic after-nystagmus (okan) and vestibular nystagmus. In: Control of Gaze by Brainsteam Neurons, pp. 37–47. Elsevier, Amsterdam (1977)Google Scholar
  24. Raphan, T., Matsuo, V., Cohen, B.: Velocity storage in the vestibulo-ocular reflex arc (vor). Exp. Brain Res. 35(2), 229–248 (1979)CrossRefGoogle Scholar
  25. Telford, L., Seidman, S.H., Paige, G.D.: Dynamics of squirrel monkey linear vestibuloocular reflex and interactions with fixation distance. J. Neurophysiol 78(4), 1775–1790 (1997)Google Scholar
  26. Zupan, L.H., Merfeld, D.M., Darlot, C.: Using sensory weighting to model the influence of canal, otolith and visual cues on spatial orientation and eye movements. Biological Cybernetics 86(3), 209–230 (2002)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Jean Laurens
    • 1
  • Jacques Droulez
    • 1
  1. 1.CNRS and Collège de France, LPPA Laboratory  

Personalised recommendations