Advertisement

Probability as an Alternative to Logic for Rational Sensory–Motor Reasoning and Decision

  • Pierre Bessière
Part of the Springer Tracts in Advanced Robotics book series (STAR, volume 46)

Abstract

  1. 1

    Incompleteness and Uncertainty: A Major Challenge for Sensory-Motor Systems

     

We assume that both living creatures and robots must face the same fundamental difficulty: incompleteness (and its direct consequence uncertainty).

Any model of a real phenomenon is incomplete: there are always some hidden variables, not taken into account in the model, that influence the phenomenon. The effect of these hidden variables is that the model and the phenomenon never behave exactly alike. Both living organisms and robotic systems must face this central difficulty: how to use an incomplete model of their environment to perceive, infer, decide and act efficiently.

Keywords

Mobile Robot Bayesian Network Bayesian Inference Maximum Entropy Hide Variable 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aji, S.M., McEliece, R.J.: The generalized distributive law. IEEE Transactions on Information Theory 46(2), 325–343 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  2. Alais, D., Burr, D.: The ventriloquist effect results from near-optimal bimodal integration. Current Biology 14, 257–262 (2004)Google Scholar
  3. Anastasio, T.J., Patton, P.E., Belkacem-Boussaid, K.: Using Bayes’ rule to model multisensory enhancement in the superior colliculus. Neural Computation 12(5), 1165–1187 (2000)CrossRefGoogle Scholar
  4. Arnborg, S., Sjödin, G.: Bayes rules in finite models. In: Proceedings of European Conference on Artificial Intelligence, pp. 571–575 (2000)Google Scholar
  5. Aycard, O.: Architecture de contrôle pour robot mobile en evironnement intérieur structuré. Thèse de doctorat, Université Henri Poincaré, Nancy, France (June 1998)Google Scholar
  6. Banks, M.S.: Neuroscience: what you see and hear is what you get. Current Biology 14(6), 236–238 (2004)CrossRefGoogle Scholar
  7. Battaglia, P.W., Jacobs, R.A., Aslin, R.N.: Bayesian integration of visual and auditory signals for spatial localization. Journal of the Optical Society of America A 20(7), 1391–1397 (2003)CrossRefGoogle Scholar
  8. Bayes, T.: An essay towards solving a problem in the doctrine of chances. Philosophical Transactions of the Royal Society of London 53, 370–418 (1763)Google Scholar
  9. Bernhardt, R., Albright, S.L.: Robot Calibration. Chapman and Hall, Boca Raton (1993)Google Scholar
  10. Bessière, P.: Survey: Probabilistic methodology and techniques for artefact conception and development. Technical Report RR-4730, INRIA, Grenoble, France (February 2003), http://www.inria.fr/rrrt/rr-4730.html
  11. Bessière, P., Dedieu, E., Lebeltel, O., Mazer, E., Mekhnacha, K.: Interprétation ou description (i): Proposition pour une théorie probabiliste des systèmes cognitifs sensori-moteurs. Intellectica 26, 257–311 (1998)Google Scholar
  12. Bessière, P., Dedieu, E., Lebeltel, O., Mazer, E., Mekhnacha, K.: Interprétation ou description (ii): Fondements mathématiques de l’approche f+d. Intellectica 26, 313–336 (1998)Google Scholar
  13. Borrelly, J.-J., Coste, E., Espiau, B., Kapellos, K., Pissard-Gibolet, R., Simon, D., Turro, N.: The orccad architecture. International Journal for Robotics Research (IJRR) 17(4), 338–359 (1998)CrossRefGoogle Scholar
  14. Brafman, R.I., Latombe, J.-C., Moses, Y., Shoham, Y.: Applications of a logic of knowledge to motion planning under uncertainty. J. ACM 44(5), 633–668 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  15. Bretthorst, G.L.: Bayesian Spectrum Analysis and Parameter Estimation. Springer, Heidelberg (1988)zbMATHGoogle Scholar
  16. Cassandra, A.R., Kaelbling, L.P., Kurien, J.A.: Acting under uncertainty: Discrete bayesian models for mobile robot navigation. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (1996)Google Scholar
  17. Cooper, G.F.: The computational complexity of probabilistic inference using bayesian belief networks. Artif. Intell. 42(2-3), 393–405 (1990)zbMATHCrossRefGoogle Scholar
  18. Cox, R.T.: The algebra of probable inference. John Hopkins Univ. Press, Baltimore (1961)zbMATHGoogle Scholar
  19. Darwiche, A., Provan, G.M.: Query dags: A practical paradigm for implementing belief-network inference. J. Artif. Intell. Res (JAIR) 6, 147–176 (1997)zbMATHMathSciNetGoogle Scholar
  20. Dekhil, M., Henderson, T.C.: Instrumented sensor system architecture. International Journal for Robotics Research (IJRR) 17(4), 402–417 (1998)CrossRefGoogle Scholar
  21. Delcher, A.L., Grove, A.J., Kasif, S., Pearl, J.: Logarithmic-time updates and queries in probabilistic networks. J. Artif. Intell. Res (JAIR) 4, 37–59 (1996)zbMATHMathSciNetGoogle Scholar
  22. Donald, B.R.: A geometric approach to error detection and recovery for robot motion planning with uncertainty. AIJ: Artificial Intelligence 37, 223–271 (1988)zbMATHCrossRefGoogle Scholar
  23. Drewing, K., Ernst, M.: Integration of force and position cues for shape perception through active touch. Brain Research 1078, 92–100 (2006)CrossRefGoogle Scholar
  24. Erickson, G., Smith, C. (eds.): Maximum-Entropy and Bayesian Methods in Science and Engineering: Volume 1: Foundations Volume 2: Applications (Fundamental Theories of Physics). Springer, Heidelberg (1988)Google Scholar
  25. Erickson, G., Zhai, Y. (eds.): Bayesian Inference and Maximum Entropy Methods in Science and Engineering. Amer. Inst. of Physics (2004)Google Scholar
  26. Erickson, G., Rychert, J., Smith, C.: Maximum Entropy and Bayesian Methods (Fundamental Theories of Physics). Springer, Heidelberg (1998)Google Scholar
  27. Ernst, M.O., Banks, M.S.: Humans integrate visual and haptic information in a statistically optimal fashion. Nature 415(6870), 429–433 (2002)CrossRefGoogle Scholar
  28. Fougère, P.: Maximum Entropy and Bayesian Methods (Fundamental Theories of Physics). Springer, Heidelberg (1990)Google Scholar
  29. Fox, D., Burgard, W., Kruppa, H., Thrun, S.: A probabilistic approach to collaborative multi-robot localization. Autonomous Robots 8(3), 325–344 (2000)CrossRefGoogle Scholar
  30. Fox, D., Thrun, S., Burgard, W., Dellaert, F.: Particle filters for mobile robot localization. In: Doucet, A., de Freitas, N., Gordon, N. (eds.) Sequential Monte Carlo Methods in Practice, New York, Springer, Heidelberg (2001)Google Scholar
  31. Frey, B.J.: Graphical Models for Machine Learning and Digital Communication. MIT Press, Cambridge (1998)Google Scholar
  32. Fry, R.(eds.): Bayesian Inference and Maximum Entropy Methods in Science and Engineering. Amer. Inst. of Physics (2002)Google Scholar
  33. Geisler, W.S., Kersten, D.: Illusions, perception and Bayes. Nature Neuroscience 5(6), 598–604 (2002)CrossRefGoogle Scholar
  34. Gepshtein, S., Banks, M.S.: Viewing geometry determines how vision and haptics combine in size perception. Current Biology 13(6), 483–488 (2003)CrossRefGoogle Scholar
  35. Gopnik, A., Schulz, L.: Mechanisms of theory formation in young children. Trends in Cognitive Sciences 8(8), 371–377 (2004)CrossRefGoogle Scholar
  36. Gusev, V., Semenov, L.: A model for optimal processing of multisensory information in the system for maintaining body orientation in the human. Biological Cybernetics 66, 407–411 (1992)zbMATHCrossRefGoogle Scholar
  37. Gutmann, J., Burgard, W., Fox, D., Konolige, K.: An experimental comparison of localization methods (1998)Google Scholar
  38. Halpern, J.Y.: A counterexample to theorems of cox and fine. Journal of Artificial Intelligence Research 10, 67–85 (1999a)zbMATHMathSciNetGoogle Scholar
  39. Halpern, J.Y.: Cox’s theorem revisited. Journal of Artificial Intelligence Research 11, 429–435 (1999b)zbMATHMathSciNetGoogle Scholar
  40. Hanson, K., Silver, R. (eds.): Maximum Entropy and Bayesian Methods (Fundamental Theories of Physics). Springer, Heidelberg (1996)Google Scholar
  41. Harnad, S.: Mind, machines and searle. Physica D 42, 335–346 (1989)CrossRefGoogle Scholar
  42. Harnad, S.: The symbol grounding problem. Journal of theoretical and experimental artificial intelligence 1, 5–25 (1990)CrossRefGoogle Scholar
  43. Heidbreder, G.: Maximum Entropy and Bayesian Methods (Fundamental Theories of Physics). Springer, Heidelberg (1996)Google Scholar
  44. Hillis, J.M., Watt, S.J., Landy, M.S., Banks, M.S.: Slant from texture and disparity cues: optimal cue combination. Journal of Vision 4, 967–992 (2004)CrossRefGoogle Scholar
  45. Jaakkola, T.S., Jordan, M.I.: Variational probabilistic inference and the QMR-DT network. Journal of Artificial Intelligence Research 10, 291–322 (1999)zbMATHGoogle Scholar
  46. Jacobs, R.A.: Optimal integration of texture and motion cues to depth. Vision Research 39, 3621–3629 (1999)CrossRefGoogle Scholar
  47. Jaynes, E.T.: Where do we Stand on Maximal Entropy? MIT Press, Cambridge (1979)Google Scholar
  48. Jaynes, E.T.: On the rationale of maximum-entropy methods. Proc. IEEE 70(9), 939–952 (1982)CrossRefGoogle Scholar
  49. Jaynes, E.T.: Probability Theory: the Logic of Science. Cambridge University Press, Cambridge (2003)zbMATHGoogle Scholar
  50. Jordan, M.I.: Learning in Graphical Models (Edited Volume). MIT Press, Cambridge (1999)Google Scholar
  51. Jordan, M.I., Ghahramani, Z., Jaakkola, T.S., Saul, L.K.: An introduction to variational methods for graphical models. Machine Learning 37(2), 183 (1999)zbMATHCrossRefGoogle Scholar
  52. Kaelbling, L.P., Littman, M.L., Cassandra, A.R.: Planning and acting in partially observable stochastic domains. Artif. Intell. 101(1-2), 99–134 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  53. Kersten, D., Mamassian, P., Yuille, A.: Object perception as bayesian inference. Annual Review of Psychology 55, 271–304 (2004)CrossRefGoogle Scholar
  54. Kiemel, T., Oie, K.S., Jeka, J.J.: Multisensory fusion and the stochastic structure of postural sway. Biological Cybernetics 87, 262–277 (2002)zbMATHCrossRefGoogle Scholar
  55. Knill, D.C., Richards, W.: Perception as bayesian inference. MIT Press, Cambridge (1996)zbMATHGoogle Scholar
  56. Knuth, K., Abbas, A., Morris, R., Castle, J.(eds.): Bayesian Inference and Maximum Entropy Methods in Science and Engineering. Amer. Inst. of Physics (2005)Google Scholar
  57. Koenig, S., Simmons, R.: Xavier: A robot navigation architecture based on partially observable markov decision process models. In: Kortenkamp, R.B.D., Murphy, R. (eds.) Artificial Intelligence Based Mobile Robotics: Case Studies of Successful Robot Systems, pp. 91–122. MIT Press, Cambridge (1998)Google Scholar
  58. Koller, D., Pfeffer, A.: Object-oriented bayesian networks. In: Proceedings of the 13th Annual Conference on Uncertainty in Artificial Intelligence (UAI-1997), San Francisco, CA, pp. 302–331. Morgan Kaufmann, San Francisco (1997)Google Scholar
  59. Konolige, K.: Improved occupancy grids for map. Autonomous Robots 4(4), 351–367 (1997)CrossRefGoogle Scholar
  60. Konolige, K., Chou, K.: Markov localization using correlation. In: Thomas, D. (ed.) Proceedings of the 16th International Joint Conference on Artificial Intelligence (IJCAI-1999), S.F., july 31- August 6, 1999, vol. 2, pp. 1154–1159. Morgan Kaufmann Publishers, San Francisco (1999)Google Scholar
  61. Körding, K.P., Wolpert, D.M.: Bayesian integration in sensorimotor learning. Nature 427, 244–247 (2004)CrossRefGoogle Scholar
  62. Laplace, P.S.: Mémoire sur la probabilité des causes par les évènements. Mémoires de l’Academie des Sciences de Paris 6 (1774)Google Scholar
  63. Laplace, P.S.: Essai philosophique sur les probabilités. Gauthier-Villars (1814)Google Scholar
  64. Laplace, P.S.: A Philosophical Essay on Probabilities. Dover Publications (1996)Google Scholar
  65. Lauritzen, S., Spiegelhalter, D.J.: Local computations with probabilities on graphical structures and their application to expert systems (with discussion). Journal of the Royal Statistical Society series B 50, 157–224 (1988)zbMATHMathSciNetGoogle Scholar
  66. Lauritzen, S.L.: Graphical Models. Oxford University Press, Oxford (1996)Google Scholar
  67. Lebeltel, O.: Programmation Bayésienne des Robots. Thèse de doctorat, Institut National Polytechnique de Grenoble, Grenoble, France (September 1999)Google Scholar
  68. Lebeltel, O., Bessière, P., Diard, J., Mazer, E.: Bayesian robot programming. Advanced Robotics 16(1), 49–79 (2004)Google Scholar
  69. Linden, W., Dose, V., Fisher, R., Preuss, R.: Maximum Entropy and Bayesian Methods (Fundamental Theories of Physics). Springer, Heidelberg (1999)Google Scholar
  70. Lozano-Pérez, T., Mason, M., Taylor, R.: Automatic synthesis of fine-motion strategies for robots. International Journal of Robotics Research 3(1), 3–24 (1984)CrossRefGoogle Scholar
  71. Matalon, B.: Epistémologie des probabilités. In: Piaget, J. (ed.) Logique et connaissance scientifique, Encyclopédie de la Pléiade, Gallimard (1967)Google Scholar
  72. Mazer, E., Boismain, G., Tuves, J.B.D., Douillard, Y., Geoffroy, S., Duboudieu, J., Tounsi, M., Verdot, F.: Start: an industrial system for teleoperation. In: Proc. of the IEEE Int. Conf. on Robotics and Automation, pp. 1154–1159 (1998)Google Scholar
  73. Mohammad-Djafari, A. (ed.): Bayesian Inference and Maximum Entropy Methods in Science and Engineering. Amer. Inst. of Physics (2001)Google Scholar
  74. Mohammad-Djafari, A., Demoment, G.: Maximum Entropy and Bayesian Methods (Fundamental Theories of Physics). Springer, Heidelberg (1993)Google Scholar
  75. Murphy, K.P.: Bayesian map learning in dynamic environments. In: Solla, S.A., Leen, T.K., Müller, K.-R. (eds.) NIPS, pp. 1015–1021. MIT Press, Cambridge (1999)Google Scholar
  76. Neal, R.M., Beal, M.J., Roweis, S.T.: Inferring state sequences for non-linear systems with embedded hidden Markov models. In: Thrun, S., et al. (eds.) Advances in Neural Information Processing Systems 16, MIT Press, Cambridge (2003)Google Scholar
  77. Nefian, A., Hayes, M.: Face recognition using an embedded hmm. In: Proceedings of the IEEE Conference on Audio and Video-based Biometric Person Authentication, pp. 19–24 (1999)Google Scholar
  78. Pearl, J.: Probabilistic reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann, San Francisco (1988)Google Scholar
  79. Pizlo, Z.: Perception viewed as an inverse problem. Vision Research 41(24), 3141–3161 (2001)CrossRefGoogle Scholar
  80. Poggio, T.: Vision by man and machine. Scientific American 250, 106–116 (1984)CrossRefGoogle Scholar
  81. Robert, C.: An entropy concentration theorem: applications in artificial intelligence and descriptive statistics. Journal of Applied Probabilities 37, 303–313 (1990)CrossRefGoogle Scholar
  82. Robinson, J.A.: A machine-oriented logic based on the resolution principle. Journal of the ACM 12(1), 23–41 (1965)zbMATHCrossRefGoogle Scholar
  83. Robinson, J.A.: Logic: Form and Function. North-Holland, Amsterdam (1979)zbMATHGoogle Scholar
  84. Rosenblatt, J.: Optimal selection of uncertain actions by maximizing expected utility. Autonomous Robots 9(1), 17–25 (2000)CrossRefGoogle Scholar
  85. Roumeliotis, S.I., Bekey, G.A.: Collective localization: A distributed kalman filter approach to localization of groups of mobile robots. In: ICRA, pp. 2958–2965. IEEE Computer Society Press, Los Alamitos (2000)Google Scholar
  86. Roumeliotis, S.I., Bekey, G.A.: Bayesian estimation and kalman filtering: A unified framework for mobile robot localization. In: ICRA, pp. 2985–2992. IEEE Computer Society Press, Los Alamitos (2000)Google Scholar
  87. Ruiz, A., López-de-Teruel, P.E., Garrido, M.C.: Probabilistic inference from arbitrary uncertainty using mixtures of factorized generalized gaussians. J. Artif. Intell. Res. (JAIR) 9, 167–217 (1998)Google Scholar
  88. Rychert, J., Erickson, G., Smith, C.: Bayesian Inference and Maximum Entropy Methods in Science and Engineering. Amer. Inst. of Physics (2001)Google Scholar
  89. Saul, L.K., Jaakkola, T., Jordan, M.I.: Mean field theory for sigmoid belief networks, February 29, 1996, vol. 4, pp. 61–76 (1996), http://www.jair.org/
  90. Schneider, S.A., Chen, V.W., Pardo-Castellote, G., Wang, H.H.: Controlshell: A software architecture for complex electromechanical systems. International Journal for Robotics Research (IJRR) 17(4), 360–380 (1998)CrossRefGoogle Scholar
  91. Shatkay, H.: Learning Models for Robot Navigation. PhD thesis, Brown University (1998)Google Scholar
  92. Skilling, J. (ed.): Maximum Entropy and Bayesian Methods (Fundamental Theories of Physics). Springer, Heidelberg (1994)Google Scholar
  93. Smith, C., Erickson, G., Neudorfer, P. (eds.): Maximum Entropy and Bayesian Methods (Fundamental Theories of Physics). Springer, Heidelberg (1992)Google Scholar
  94. Smith, C.R., Grandy, J.W.T.: Maximum-Entropy and Bayesian Methods in Inverse Problems. Reidel, Dordrecht, Holland (1985)zbMATHGoogle Scholar
  95. Tarantola, A.: Inverse Problem Theory. Elsevier Science Publishers B. V., Amsterdam, The Netherlands (1986), ISBN 0-444-42765-1Google Scholar
  96. Thrun, S.: Bayesian landmark learning for mobile robot localization. Machine Learning 33(1), 41–76 (1998)zbMATHCrossRefGoogle Scholar
  97. Thrun, S.: Towards programming tools for robots that integrate probabilistic computation and learning. In: ICRA, pp. 306–312. IEEE Computer Society Press, Los Alamitos (2000)Google Scholar
  98. Thrun, S., Burgard, W., Fox, D.: A probabilistic approach to concurrent mapping and localization for mobile robots. Auton. Robots 5(3-4), 253–271 (1998)CrossRefGoogle Scholar
  99. Thrun, S., Burgard, W., Fox, D.: Probabilistic Robotics. MIT Press, Cambridge (2005)zbMATHGoogle Scholar
  100. Van der Kooij, H., Jacobs, R., Koopman, B., Grootenboer, H.: A multisensory integration model of human stance control. Biological Cybernetics 80, 299–308 (1999)zbMATHCrossRefGoogle Scholar
  101. Weiss, Y., Simoncelli, E.P., Adelson, E.H.: Motion illusions as optimal percepts. Nature Neuroscience 5(6), 598–604 (2002)CrossRefGoogle Scholar
  102. Williams, C.: Bayesian Inference and Maximum Entropy Methods in Science and Engineering. Amer. Inst. of Physics (2003)Google Scholar
  103. Yuille, A.L., Bülthoff, H.H.: Bayesian decision theory and psychophysics, pp. 123–161. MIT Press, Cambridge (1996)Google Scholar
  104. Zhang, N.L., Poole, D.: Exploiting causal independence in bayesian network inference. Journal of Artificial Intelligence Research 5, 301–328 (1996)zbMATHMathSciNetGoogle Scholar
  105. Zupan, L.H., Merfeld, D.M., Darlot, C.: Using sensory weighting to model the influence of canal, otolith and visual cues on spatial orientation and eye movements. Biological Cybernetics 86(3), 209–230 (2002)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Pierre Bessière
    • 1
  1. 1.CNRS – Grenoble Université 

Personalised recommendations