On the Multimodal Logic of Normative Systems

  • Pilar Dellunde
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4870)


We introduce Multimodal Logics of Normative Systems as a contribution to the development of a general logical framework for reasoning about normative systems over logics for Multi-Agent Systems. Given a multimodal logic L, for every modality \(\Box_{i}\) and normative system η, we expand the language adding a new modality \(\Box_{i}^{\eta}\) with the intended meaning of \(\Box_{i}^{\eta}\phi\) being “φ is obligatory in the context of the normative system η over the logic L”. In this expanded language we define the Multimodal Logic of Normative Systems over L, for any given set of normative systems N, and we give a sound and complete axiomatisation for this logic, proving transfer and model checking results. The special case when L and N are axiomatised by sets of Sahlqvist or shallow modal formulas is studied.


Fusions of Logics Multimodal Logics Normative Systems Multi-Agent Systems Model Theory Sahlqvist Formulas 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Noriega, P.: Fencing the Open Fields: Empirical Concerns on Electronic Institutions. In: Boissier, O., Padget, J.A., Dignum, V., Lindemann, G., Matson, E., Ossowski, S., Sichman, J.S., Vázquez-Salceda, J. (eds.) ANIREM 2005 and OOOP 2005. LNCS (LNAI), vol. 3913, pp. 82–98. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  2. 2.
    van der Hoek, W., Wooldridge, M.: On obligations and normative ability: towards a logical analysis of the social contract. Journal of Applied Logic 3, 396–420 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Ågotnes, T., van der Hoek, W., Rodríguez-Aguilar, J.A., Sierra, C., Wooldridge, M.: On the Logic of Normative Systems. Twentieth International Joint Conference on AI, IJCAI 2007, pp. 1175–1180. AAAI Press, Menlo Park (2007)Google Scholar
  4. 4.
    Gabbay, D.M.: Fibring Logics. Oxford Logic Guides, 38 (1999)Google Scholar
  5. 5.
    Kurucz, A.: Combining Modal Logics. In: Blackburn, P., van Benthem, J., Wolter, F. (eds.) Handbook of Modal Logic, vol. 15, pp. 869–928. Elsevier, Amsterdam (2007)CrossRefGoogle Scholar
  6. 6.
    Blackburn, P., van Benthem, J., Wolter, F.: Handbook of Modal Logic, vol. 15. Elsevier, Amsterdam (2007)zbMATHGoogle Scholar
  7. 7.
    Ramchurn, S.D., Sierra, C., Godo, L., Jennings, N.R.: Negotiating using rewards. In: Proceedings of the Fifth international Joint Conference on Autonomous Agents and Multiagent Systems. AAMAS 2006, Hakodate, Japan, May 08–12, 2006, pp. 400–407. ACM Press, New York (2006)CrossRefGoogle Scholar
  8. 8.
    Gabbay, D.M.: What is a Logical System? Oxford University Press, Inc, Oxford (1994)Google Scholar
  9. 9.
    Thomason, S.K.: Independent Propositional Modal Logics. Studia Logica 39, 143–144 (1980)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Baader, F., Ghilardi, S., Tinelli, C.: A new combination procedure for the word problem that generalizes fusion decidability results in modal logics. Information and Computation 204, 1413–1452 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Finger, M., Weiss, M.A.: The Unrestricted Combination of Temporal Logic Systems. Logic Journal of the IGPL 10, 165–189 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Franceschet, M., Montanari, A., de Rijke, M.: Model Checking for Combined Logics with an Application to Mobile Systems. Automated Software Engineering 11, 289–321 (2004)CrossRefGoogle Scholar
  13. 13.
    Wolter, F.: Fusions of modal logics revisited. In: Kracht, M., de Rijke, M., Wansing, H., Zakharyashev, M. (eds.) Advances in Modal Logic, CSLI, Stanford (1998)Google Scholar
  14. 14.
    Cate, B.D.T.: Model Theory for extended modal languages. Ph.D Thesis, Institute for Logic, Language and Computation, Universiteit van Amsterdam. ILLC Dissertation, Series DS-2005-01 (2005)Google Scholar
  15. 15.
    Goranko, V., Vakarelov, D.: Elementary Canonical Formulae: extending Sahlqvist’s Theorem. Annals of Pure and Applied Logic 141, 180–217 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Moses, Y., Tennenholtz, M.: Artificial social systems. Computers and AI 14, 533–562 (1995)MathSciNetGoogle Scholar
  17. 17.
    Shoham, Y., Tennenholtz, M.: On the synthesis of useful social laws for artificial agent societies. In: Proceedings of the Tenth National Conference on Artificial Intelligence (AAAI 1992), San Diego, CA (1992)Google Scholar
  18. 18.
    Shoham, Y., Tennenholtz, M.: On social laws for artificial agent societies: Off-line design. In: Agre, P.E., Rosenschein, S.J. (eds.) Computational Theories of Interaction and Agency, pp. 597–618. MIT Press, Cambridge (1996)Google Scholar
  19. 19.
    Shoham, Y., Tennenholtz, M.: On the emergence of social conventions: Modelling, analysis, and simulations. Artificial Intelligence 94(1–2), 139–166 (1997)zbMATHCrossRefGoogle Scholar
  20. 20.
    Fitoussi, D., Tennenholtz, M.: Choosing social laws for multi-agent systems: Minimality and simplicity. Artificial Intelligence 119(1–2), 61–101 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Lomuscio, A., Sergot, M.: Deontic interpreted systems. Studia Logica 75(1), 63–92 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Viganò, F., Colombetti, M.: Model Checking Norms and Sanctions in Institutions. In: Sichman, J.S., et al. (eds.) COIN 2007 Workshops. LNCS (LNAI), vol. 4870, pp. 261–274. Springer, Heidelberg (2008)Google Scholar
  23. 23.
    Cliffe, O., De Vos, M., Padget, J.: Embedding Landmarks and Scenes in a Computational Model of Institutions. In: Sichman, J.S., et al. (eds.) COIN 2007 Workshops. LNCS (LNAI), vol. 4870, pp. 262–275. Springer, Heidelberg (2008)Google Scholar
  24. 24.
    García-Camino, A., Rodríguez-Aguilar, J.A., Vasconcelos, W.: A Distributed Architecture for Norm Management in Multi-Agent Systems. In: Sichman, J.S., Padget, J., Ossowski, S., Noriega, P. (eds.) COIN 2007. LNCS(LNAI), vol. 4870, pp. 275–286. Springer, Heidelberg (2008)Google Scholar
  25. 25.
    Joseph, S., Sierra, C., Schorlemmer, M.: A coherence based framework for institutional agents. In: Sichman, J.S., Padget, J., Ossowski, S., Noriega, P. (eds.) COIN 2007. LNCS(LNAI), vol. 4870, pp. 287–300. Springer, Heidelberg (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Pilar Dellunde
    • 1
  1. 1.Universitat Autònoma de Barcelona and Artificial Intelligence Research Institute (IIIA-CSIC)Cerdanyola del VallesSpain

Personalised recommendations