Advertisement

Using Case-Based Reasoning in Autonomic Electronic Institutions

  • Eva Bou
  • Maite López-Sánchez
  • Juan Antonio Rodríguez-Aguilar
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4870)

Abstract

Electronic institutions (EIs) define the rules of the game in agent societies by fixing what agents are permitted and forbidden to do and under what circumstances. Autonomic Electronic Institutions (AEIs) adapt their regulations to comply with their goals despite coping with varying populations of self-interested external agents. This paper presents a self-adaptation model based on Case-Based Reasoning (CBR) that allows an AEI to yield a dynamical answer to changing circumstances.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Luck, M., McBurney, P., Shehory, O., Willmott, S.: Agentlink Roadmap (2005), Agentlink.org
  2. 2.
    Kephart, J.O., Chess, D.M.: The vision of autonomic computing. IEEE Computer 36(1), 41–50 (2003)Google Scholar
  3. 3.
    Esteva, M.: Electronic Institutions: From specification to development. IIIA, Ph.D. Monography 19 (2003)Google Scholar
  4. 4.
    Bou, E., López-Sánchez, M., Rodríguez-Aguilar, J.A.: Towards self-configuration in autonomic electronic institutions. In: Noriega, P., Vázquez-Salceda, J., Boella, G., Boissier, O., Dignum, V., Fornara, N., Matson, E. (eds.) COIN 2006. LNCS (LNAI), vol. 4386, pp. 220–235. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  5. 5.
    Aamodt, A., Plaza, E.: Case-based reasoning: Foundational issues, methodological variations, and system approaches. AI Commun 7(1), 39–59 (1994)Google Scholar
  6. 6.
    Gasser, L., Ishida, T.: A dynamic organizational architecture for adaptive problem solving. In: Proc. of AAAI-91, Anaheim, CA, pp. 185–190 (1991)Google Scholar
  7. 7.
    Horling, B., Benyo, B., Lesser, V.: Using Self-Diagnosis to Adapt Organizational Structures. In: Proceedings of the 5th International Conference on Autonomous Agents, pp. 529–536 (2001)Google Scholar
  8. 8.
    Conte, R., Falcone, R., Sartor, G.: Agents and norms: How to fill the gap? Artificial Intelligence and Law (7), 1–15 (1999)Google Scholar
  9. 9.
    Fitoussi, D., Tennenholtz, M.: Choosing social laws for multi-agent systems: Minimality and simplicity. Artificial Intelligence 119(1-2), 61–101 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Camurri, M., Mamei, M., Zambonelli, F.: Urban traffic control with co-fields. In: Proc. of E4MAS Workshop at AAMAS, vol. 2006, pp. 11–25 (2006)Google Scholar
  11. 11.
    Plaza, E., Ontañón, S.: Cooperative multiagent learning. In: Alonso, E., Kudenko, D., Kazakov, D. (eds.) AAMAS 2000 and AAMAS 2002. LNCS (LNAI), vol. 2636, pp. 1–17. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  12. 12.
    Ros, R., Veloso, M.: Executing Multi-Robot Cases through a Single Coordinator. In: Proc. of Autonomous Agents and Multiagent Systems, pp. 1264–1266 (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Eva Bou
    • 1
  • Maite López-Sánchez
    • 2
  • Juan Antonio Rodríguez-Aguilar
    • 1
  1. 1.IIIA, Artificial Intelligence Research Institute CSICSpanish National Research CouncilBellaterraSpain
  2. 2.WAI, Volume Visualization and Artificial Intelligence, MAiA Dept.Universitat de Barcelona 

Personalised recommendations