Skip to main content

Biologically Inspired Clustering: Comparing the Neural and Immune Paradigms

  • Chapter

Part of the book series: Studies in Computational Intelligence ((SCI,volume 129))

Abstract

Biological systems have been an inspiration in the development of prototype-based clustering and vector quantization algorithms. The two dominant paradigms in biologically motivated clustering schemes are neural networks and, more recently, biological immune systems. These two biological paradigms are discussed regarding their benefits and shortcomings in the task of approximating multi-dimensional data sets. Further, simulation results are used to illustrate these properties. A class of novel hybrid models is outlined by combining the efficient use of a network topology of the neural models and the power of evolutionary computation of immune system models.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baraldi, A., Blonda, P.: A survey of fuzzy clustering algorithms for pattern recognition. II. IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics) 29, 786–801 (1999)

    Article  Google Scholar 

  2. Bauer, H.U., Villmann, T.: Growing a hypercubical output space in a self-organizing feature map. IEEE Transactions on Neural Networks 8(2), 218–226 (1997)

    Article  Google Scholar 

  3. Bersini, H.: Frustration and clustering in biological networks. In: Artificial Life V: Proceedings of the fifth international workshop on the synthesis and simulation of living systems. MIT Press, Nara, Japan (1996)

    Google Scholar 

  4. Bounsaythip, C., Honkela, T.: Combination of neural and evolutionary methods for data organization. In: Proceedings of FODO’98, The 5th International Conference on Foundations of Data Organization, pp. 20–25. Kobe, Japan (1998)

    Google Scholar 

  5. Campbell, N.A., Mahon, R.J.: A multi-variate study of variation in two species of rock crab of genus leptograpsus. Australian Journal of Zoology 22, 417–425 (1974)

    Article  Google Scholar 

  6. de Castro, L.N., Timmis, J. (eds.): Artificial Immune Systems: A New Computational Intelligence Approach. Springer-Verlag (2002)

    Google Scholar 

  7. de Castro, L.N., Zuben, F.J.V.: Data Mining: A Heuristic Approach, chap. aiNet: An Artificial Immune Network for Data Analysis, pp. 231–259. Idea Group Publishing, USA (2001)

    Google Scholar 

  8. Fritzke, B.: A growing neural gas network learns topologies. In: G. Tesauro, D.S. Touretzky, T.K. Leen (eds.) Advances in Neural Information Processing Systems 7, pp. 625–632. MIT Press, Cambridge MA (1995)

    Google Scholar 

  9. González, F., Dasgupta, D.: Neuro-immune and self-organizing map approaches to anomaly detection: A comparison (2002)

    Google Scholar 

  10. Jerne, J.K.: Towards a network theory of the immune system. Annals of Institute Pasteur/ Immunology (Paris) 125C, 373–389 (1974)

    Google Scholar 

  11. Kohonen, T.: Self-Organizing Maps, Springer Series in Information Sciences, vol. 30. Springer, Berlin, Heidelberg (1995). (Second Extended Edition 1997)

    Google Scholar 

  12. Lampinen, J.: On clustering properties of hierarchical self-organizing maps. In: I. Aleksander, J. Taylor (eds.) Artificial Neural Networks, 2, vol. II, pp. 1219–1222. North-Holland, Amsterdam, Netherlands (1992)

    Google Scholar 

  13. Mainzer, K.: Computer technology and evolution: From artificial intelligence to artificial life. Society for Philosophy and Technology, DLA e-journal 4(1) (1998)

    Google Scholar 

  14. Martinetz, T.M.: Competitive Hebbian learning rule forms perfectly topology preserving maps. In: ICANN’93: International Conference on Artificial Neural Networks, pp. 427–434. Springer, Amsterdam (1993)

    Google Scholar 

  15. Neal, M.: Meta-stable memory in an artificial immune network. In: Proceedings of the 2nd International Conference on Artificial Immune Systems (ICARIS 2003), LNCS 2787, pp. 168–180 (2003)

    Google Scholar 

  16. Timmis, J., Neal, M.: A resource limited artificial immune system for data analysis. Knowledge Based Systems 14(3–4), 121–130 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pöllä, M., Honkela, T., Gao, XZ. (2008). Biologically Inspired Clustering: Comparing the Neural and Immune Paradigms. In: Krasnogor, N., Nicosia, G., Pavone, M., Pelta, D. (eds) Nature Inspired Cooperative Strategies for Optimization (NICSO 2007). Studies in Computational Intelligence, vol 129. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78987-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-78987-1_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-78986-4

  • Online ISBN: 978-3-540-78987-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics