Skip to main content

Multivariate Time Series Classification via Stacking of Univariate Classifiers

  • Chapter
Supervised and Unsupervised Ensemble Methods and their Applications

Part of the book series: Studies in Computational Intelligence ((SCI,volume 126))

Summary

This work explores the capacity of Stacking to generate multivariate time series classifiers from classifiers of their univariate time series components. The Stacking scheme proposed uses k-nearest neighbors (K-NN) with dynamic time warping (DTW) as a dissimilarity measure for the level 0 learners. Support vector machines and Naïve Bayes are applied at level 1. The method has been tested on two data sets: Continuous plant diagnosis and Japanese vowels. Experimental results show that for these data sets the proposed Stacking configuration performs well when multivariate DTW fails to produces precise K-NN classifiers, increasing the accuracy achieved by K-NN as a stand alone method by the order of magnitude. This is an interesting issue because good univariate time series classifiers do not always perform satisfactory when adapted to the multivariate case. On the contrary, if the multivariate classifier is accurate, Stacking univariate classifiers may perform worse.

This work has been partially funded by Spanish Ministry of Education and Culture through grant DPI2005-08498, and Junta Castilla y León VA088A05.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kadous MW (2002) Temporal classification: extending the classification paradigm to multivariate time series. PhD Thesis, University of New South Wales, Sydney, http://www.cse.unsw.edu.au/~waleed/phd/

  2. Rodríguez JJ, Alonso CJ (2004) Técnicas de aprendizaje automático para la clasificación de series. In: Giráldez R, Riquelme JC, Aguilar-Ruiz JS (eds), Tendencias de la Minería de Datos en España: Red Española de Minería de Datos, Universidad de Valladolid, España, pp 217–228

    Google Scholar 

  3. Bengio Y (1999) Markovian models for sequential data. Neural Computing Surveys 2:129–162, http://www.iro.umontreal.ca/~lisa/bib/pub_subject/markov/pointeurs/hmms.ps

  4. Rabiner L, Juang B-H (1993) Fundamentals of speech recognition. Prentice Hall, Upper Saddle River

    Google Scholar 

  5. Bishop CM (1995) Neural networks for pattern recognition. Oxford University Press, Oxford

    Google Scholar 

  6. Haykin S (1998) Neural networks: a comprehensive foundation. Prentice Hall, Upper Saddle River

    Google Scholar 

  7. Keogh E, Ratanamahatana CA (2005) Exact indexing of dynamic time warping. Knowl Inf Syst 7:358–386

    Article  Google Scholar 

  8. Colomer J, Meléndez J, Gamero FI (2002) Qualitative representation of process trends for situation assessment based on cases. In: Proc the 15th IFAC World Congress, Barcelona, Spain. Elsevier, Amsterdam

    Google Scholar 

  9. Myers CS, Rabiner LR (1981) A comparative study of several dynamic time-warping algorithms for connected word recognition. The Bell Syst Tech J 60:1389–1409

    Google Scholar 

  10. Wolpert DH (1992) Stacked generalization. Neural Networks 5:241–259, http://citeseer.csail.mit.edu/wolpert92stacked.html

    Google Scholar 

  11. Feng C (1992) Inducting temporal fault diagnostic rules from a qualitative model. In: Muggleton S (ed) Inductive Logic Programming. Academic Press, London

    Google Scholar 

  12. Venkatasubramanian V, Chan K (1989) A neural network methodology for process fault diagnosis. The Amer Inst of Chemical Engineers J 35:1993–2002

    Google Scholar 

  13. Sleeman D, Mitchell F, Milne R (1996) Applying KDD techniques to produce diagnostic rules for dynamic systems. Tech Report AUCS/TR9604, University of Aberdeen, Scotland

    Google Scholar 

  14. Suárez AJ, Abad PJ, Ortega JA, Gasca RM (2002) Diagnosis progresiva en el tiempo de sistemas dinámicos. In: Ortega JA, Parra X, Pulido B (eds) Proc IV Jornadas de ARCA, Sistemas Cualitativos y Diagnosis, pp 111–120

    Google Scholar 

  15. Roverso D (2003) Fault diagnosis with the Aladdin transient classifier. In: Willett PK, Kirubarajan T (eds) Proc of the SPIE Conf Syst Diagnosis and Prognosis: Security and Condition Monitoring Issues III, Orlando, FL, USA. SPIE Press, Bellingham, pp 162–172

    Google Scholar 

  16. Alonso C, Rodríguez JJ, Pulido B (2004) Enhancing consistency based diagnosis with machine learning techniques. In: Conejo R, Urretavizcaya M, Pérez-de-la-Cruz J-L (eds) Proc the 10th Conf Spanish Assoc Artif Intell, San Sebastian, Spain. Springer, Berlin/Heidelberg, pp 312–321

    Google Scholar 

  17. Witten IH, Frank E (2000) Data mining: practical machine learning tools with Java implementations. Morgan Kaufmann, San Francisco

    Google Scholar 

  18. Nadeau C, Bengio Y (2003) Inference for the generalization error. Mach Learn 52:239–281

    Article  MATH  Google Scholar 

  19. Kudo M, Toyama J, Shimbo M (1999) Multidimensional curve classification using passing-through regions. Pattern Recogn Lett 20:1103–1111

    Article  Google Scholar 

  20. Hettich S, Bay SD (1999) The UCI KDD Archive, University of California, Irvine, http://kdd.ics.uci.edu

  21. Gunn SR (1998) Support vector machines for classification and regression. Tech Report, University of Southampton, UK

    Google Scholar 

  22. Lin H-T, Li L (2005) Novel distance-based SVM kernels for infinite ensemble learning. In: Proc the 12th Int Conf Neural Inf Proc, Taipei, Taiwan, pp 761–766

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Alonso, C., Prieto, Ó., Rodríguez, J.J., Bregón, A. (2008). Multivariate Time Series Classification via Stacking of Univariate Classifiers. In: Okun, O., Valentini, G. (eds) Supervised and Unsupervised Ensemble Methods and their Applications. Studies in Computational Intelligence, vol 126. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78981-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-78981-9_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-78980-2

  • Online ISBN: 978-3-540-78981-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics