Skip to main content

XCS for Fusing Multi-Spectral Data in Automatic Target Recognition

  • Chapter

Part of the book series: Studies in Computational Intelligence ((SCI,volume 125))

Summary

We present our most recent efforts in applying XCS to automatic target recognition (ATR). We place particular emphasis on ATR as a series of linked problems, which include pre-processing of multi-spectral data, detection of objects (in this case, vehicles) in that data, and identification (classification) of those objects. Multi-spectral data contains visual imagery, and additional imagery from several infrared spectral bands. The performance of XCS, with robust features, notably exceeds that of a template-based classifier on the pre-processed multi-spectral data for vehicle identification. Promising preliminary results are also presented for vehicle detection. Future directions for this research are discussed in the conclusions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Back, T., Fogel, D. B., Michalewicz, Z. (Eds.) (1997). The Handbook of Evolutionary Computation, Oxford University Press, New York

    Google Scholar 

  2. Butz, M., Wilson, S. W. (2002). An algorithmic description of XCS. Soft Computing, 6(3–4), 144–153

    MATH  Google Scholar 

  3. De Jong, K. A., Spears, W. M., Gordon, D. F. (1993). Using genetic algorithms for concept learning. Machine Learning, 13, 161–188

    Article  Google Scholar 

  4. ftp://ftp-illigal.ge.uiuc.edue/pub/src/XCS/XCS1.2.tar.Z

  5. Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization, and Machine Learning, Addison Wesley, MA

    MATH  Google Scholar 

  6. Landgrebe, D. A. (2003). Signal Theory Methods in Multispectral Remote Sensing, Wiley, New York

    Book  Google Scholar 

  7. Lanzi, P. L., Stolzmann, W., Wilson, S. W. (Eds.) (2000). Learning Classifier Systems: From Foundations to Applications, Springer, Berlin Heidelberg New York, pp. 63–81

    Google Scholar 

  8. Malik, J., Belongie, S., Leung, T. K., Shi, J. (2001). Contour and texture analysis for image segmentation. International Journal of Computer Vision, 43(1), 7–27

    Article  MATH  Google Scholar 

  9. Office of Geographic and Environmental Information (MassGIS), Commonwealth of Massachusetts, Executive Office of Environmental Affairs

    Google Scholar 

  10. Pugh, M., Waxman, A., Fay, D. (2006). Assessment of multi-sensor neural image fusion and fused data mining for land cover classification. In Proceedings of the International Conference on Information Fusion, Florence, Italy, July 2006

    Google Scholar 

  11. Ravichandran, B., Gandhe, A., Smith, R. E. Machine learning for robust automatic target recognition. Information Fusion: The International Journal on Multi-Sensor, Multi-Source Information Fusion (in press)

    Google Scholar 

  12. Ravichandran, B., Gandhe, A., Smith, R. E. (2005). XCS for robust automatic target recognition. In Proceedings of GECCO 2005, ACM Press, Washington DC, pp. 1803–1810

    Chapter  Google Scholar 

  13. Smith, R. E., Dike, B. A., Ravichandran, B., El-Fallah, A., Mehra, R. K. (2001). Discovering novel fighter combat maneuvers in simulation: simulating test pilot creativity. In P. J. Bentley, D. W. Corne (Eds.), Creative Evolutionary Systems, Morgan Kaufmann, San Francisco, CA, pp. 467–486

    Google Scholar 

  14. Sutton, R., Barto, A. (1998). Reinforcement Learning, MIT Press, Cambridge, MA

    Google Scholar 

  15. WASP Fact Sheet, Rochester Institute of Technology

    Google Scholar 

  16. Wilson, S. W. (1994). Classifier fitness based on accuracy, Evolutionary Computation, 3(2), 149–175, 1994

    Article  Google Scholar 

  17. Wilson, S. W. (1994). ZCS: a zeroth-level classifier system, Evolutionary Computation, 2(1), 1–18

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gandhe, A., Yu, SH., Mehra, R., Smith, R.E. (2008). XCS for Fusing Multi-Spectral Data in Automatic Target Recognition. In: Bull, L., Bernadó-Mansilla, E., Holmes, J. (eds) Learning Classifier Systems in Data Mining. Studies in Computational Intelligence, vol 125. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78979-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-78979-6_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-78978-9

  • Online ISBN: 978-3-540-78979-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics