Skip to main content

Turbulent Combustion in Thermonuclear Supernovae

  • Chapter
  • First Online:
Interdisciplinary Aspects of Turbulence

Part of the book series: Lecture Notes in Physics ((LNP,volume 756))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adalsteinsson D., Sethian J.A.: The fast construction of extension velocities in level set methods. J. Comp. Phys. 148, 2–22 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  2. Almgren A.S., Bell J.B., Rendleman C.A., Zingale M.: Low mach number modeling of Type Ia supernovae. I. Hydrodynamics. ApJ 637, 922–936 (February 2006)

    Google Scholar 

  3. Arnett W.D.: A possible model of supernovae: detonation of 12C. Ap&SS 5, 180–212 (March 1969)

    Google Scholar 

  4. Bell J.B., Day M.S., Rendleman C.A., Woosley S.E., Zingale M.: Direct numerical simulations of Type Ia supernovae flames. I. The Landau-Darrieus instability. ApJ 606, 1029–1038 (May 2004)

    Article  ADS  Google Scholar 

  5. Blinnikov S.I., Röpke F.K., Sorokina E.I., Gieseler M., Reinecke M., Travaglio C., Hillebrandt W., Stritzinger M.: Theoretical light curves for deflagration models of Type Ia supernova. A&A 453, 229–240 (July 2006)

    Article  ADS  Google Scholar 

  6. Blinnikov S.Iv., Sasorov P.V.: Landau-Darrieus instability and the fractal dimension of flame fronts. Phys. Rev. E. 53(5), 4827–4841 (1996)

    Article  ADS  Google Scholar 

  7. Borghi R.W.: On the structure and morphology of turbulent premixed flames. In C. Casci (ed.) Recent Advances in the Aerospace Sciences, Chap. 7, pp. 117–138. Plenum Publishing Corporation, New York (1985)

    Chapter  Google Scholar 

  8. Brachwitz F., Dean D. J., Hix W. R., Iwamoto K., Langanke K., Martínez-Pinedo G., Nomoto K., Strayer M.R., Thielemann F., Umeda H.: The role of electron captures in Chandrasekhar-mass models for Type Ia supernovae. ApJ 536, 934–947 (June 2000)

    Article  ADS  Google Scholar 

  9. Branch D., Fisher A., Nugent P.: On the relative frequencies of spectroscopically normal and peculiar Type Ia supernovae. AJ 106, 2383–2391 (December 1993)

    Article  ADS  Google Scholar 

  10. Calder A.C., Plewa T., Vladimirova N., Lamb D.Q., Truran J.W.: Type Ia supernovae: An asymmetric deflagration model. astro-ph/0405126 (2004)

    Google Scholar 

  11. Carroll B.W., Ostlie D.A.: An Introduction to Modern Astrophysics. Addison-Wesley, New York (1996)

    Google Scholar 

  12. Chandrasekhar S.: The maximum mass of ideal white dwarfs. Astrophys. J. 74, 81 (1931)

    Article  ADS  Google Scholar 

  13. Colella P., Woodward P.R.: The piecewise parabolic method (PPM) for gas-dynamical simulations. J. Comp. Phys. 54, 174–201 (1984)

    Article  ADS  Google Scholar 

  14. Colella P., Glaz H.M.: Efficient solution algorithms for the Riemann problem for real gases. J. Comp. Phys. 59, 264–289 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  15. Cox J.P., Giuli R.T.: Principles of Stellar Structure, Vol. 2. Gordon and Breach, New York (1968)

    Google Scholar 

  16. Damköhler G.: Der Einfluβder Turbulenz auf die Flammengeschwindigkeit in Gasgemischen. Z. f. Elektroch. 46(11), 601–652 (1940)

    Google Scholar 

  17. Darrieus G.: Propagation d’un front de flame. Communication presented at La Technique Moderne, Unpublished (1938)

    Google Scholar 

  18. Frisch U.: Turbulence. Cambridge University Press, Cambridge (1995)

    Book  Google Scholar 

  19. Fryxell B.A., Müller E. Arnett W.D.: Hydrodynamics and nuclear burning. MPA Green Report 449. Max-Planck-Institut für Astrophysik, Garching (1989)

    Google Scholar 

  20. Gamezo V.N., Khokhlov A.M., Oran E.S.: Deflagrations and detonations in thermonuclear supernovae. Phys. Rev. Lett. 92(21), 211102 (May 2004)

    Article  ADS  Google Scholar 

  21. Gamezo V.N., Khokhlov A.M., Oran E.S., Chtchelkanova A.Y., Rosenberg R.O.: Thermonuclear supernovae: Simulations of the deflagration stage and their implications. Science 299, 77–81 (2003)

    Article  ADS  Google Scholar 

  22. García-Senz D., Bravo E.: Type Ia supernova models arising from different distributions of igniting points. A&A 430, 585–602 (February 2005)

    Google Scholar 

  23. Garcia-Senz D., Bravo E., Serichol N.: A Particle code for deflagrations in white dwarfs. I. Numerical techniques. ApJS, 115, 119–139 (March 1998)

    Google Scholar 

  24. Garcia-Senz D., Woosley S.E.: Type Ia supernovae: The flame is born. ApJ 454, 895–900 (December 1995)

    Article  ADS  Google Scholar 

  25. Germano M.: Turbulence: The filtering approach. J. Fluid Mech. 238, 325–336 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  26. Germano M., Piomelli U., Moin P., Cabot W.H.: A dynamic subgrid-scale eddy viscosity model. Phys. Fluids 3, 1760–1765 (July 1991)

    Article  ADS  Google Scholar 

  27. Hillebrandt W., Niemeyer J.C.: Type Ia supernova explosion models. ARA&A 38, 191–230 (2000)

    Article  ADS  Google Scholar 

  28. Höflich P., Stein J.: On the thermonuclear runaway in Type Ia supernovae: How to run away? ApJ 568, 779–790 (April 2002)

    Article  ADS  Google Scholar 

  29. Hoyle F., Fowler W.A.: Nucleosynthesis in supernovae. ApJ 132, 565–590 (November 1960)

    Article  ADS  Google Scholar 

  30. Iapichino L., Brüggen M., Hillebrandt W., Niemeyer J.C.: The ignition of thermonuclear flames in Type Ia supernovae. A&A 450, 655–666 (May 2006)

    Article  ADS  Google Scholar 

  31. Ivanova L.N., Imshennik V.S., Chechetkin V.M.: Pulsation regime of the thermonuclear explosion of a star’s dense carbon core. Ap&SS 31, 497–514 (December 1974)

    Article  ADS  Google Scholar 

  32. Khokhlov A.M.: Delayed detonation model for Type IA supernovae. A&A 245, 114–128 (May 1991)

    Google Scholar 

  33. Kim W., Menon S., Mongia H.C.: Large-eddy simulation of a gas turbine combustor flow. Combust. Sci. Tech. 143, 25–62 (1999)

    Article  Google Scholar 

  34. Kozma C., Fransson C., Hillebrandt W., Travaglio C., Sollerman J., Reinecke M., Röpke F.K., Spyromilio J.: Three-dimensional modeling of Type Ia supernovae – the power of late time, spectra., A&A, 437, 983–995, (July 2005)

    Google Scholar 

  35. Kuhlen M., Woosley S.E., Glatzmaier G.A.: Carbon ignition in Type Ia supernovae. II. A three-dimensional numerical model. ApJ 640, 407–416 (March 2006)

    Article  ADS  Google Scholar 

  36. Landau L.D.: On the theory of slow combustion. Acta Physicochim. URSS 19, 77–85 (1944)

    Google Scholar 

  37. Landau L.D., Lifshitz E.M.: Fluid Mechanics, Vol. 6 of Course of Theoretical Physics. Pergamon Press, Oxford (1959)

    Google Scholar 

  38. Leibundgut B.: Cosmological implications from observations of Type Ia supernovae. ARA&A 39, 67–98 (2001)

    Article  ADS  Google Scholar 

  39. Liñan A., Williams F.A.: Fundamental aspects of combustion. Oxford University Press, Oxford, New York (1993)

    Google Scholar 

  40. Livne E.: Numerical simulations of the convective flame in white dwarfs. ApJ 406, L17–L20 (March 1993)

    Article  ADS  Google Scholar 

  41. Livne E., Asida S.M., Höflich P.: On the sensitivity of deflagrations in a Chandrasekhar mass white dwarf to initial conditions. ApJ 632, 443–449 (October 2005)

    Article  ADS  Google Scholar 

  42. Müller E.: Fundamentals of gasdynamical simulations. In Contopoulos G., Spyrou N.K., Vlahos L. (eds.) Galactic Dynamics and N-Body Simulations, Lect. Notes Phys. 433, 313–363. Springer-Verlag, Berlin Heidelberg (1994)

    Chapter  Google Scholar 

  43. Nandkumar R., Pethick C.J.: Transport coefficients of dense matter in the liquid metal regime. MNRAS 209, 511–524 (August 1984)

    Article  ADS  Google Scholar 

  44. Niemeyer J.C.: On the propagation of thermonuclear flames in Type Ia supernovae. PhD thesis, Technical University of Munich (1995). also available as MPA Green Report 911

    Google Scholar 

  45. Niemeyer J.C.: Can deflagration-detonation transitions occur in Type Ia supernovae? ApJ 523, L57–L60 (September 1999)

    Google Scholar 

  46. Niemeyer J.C., Hillebrandt W.: Microscopic instabilities of nuclear flames in Type Ia supernovae. ApJ 452, 779–784 (October 1995)

    Article  ADS  Google Scholar 

  47. Niemeyer J.C., Hillebrandt W.: Turbulent nuclear flames in Type Ia supernovae. Astrophys. J. 452, 769 (October 1995)

    Article  ADS  Google Scholar 

  48. Niemeyer J.C., Hillebrandt W.: Microscopic and macroscopic modeling of thermonuclear burning fronts. In Ruiz-Lapuente P., Canal R., Isern J. (eds.) Thermonuclear Supernovae, pp. 441–456. Kluwer Academic Publishers, Dordrecht (1997)

    Chapter  Google Scholar 

  49. Niemeyer J.C., Kerstein A.R.: Burning regimes of nuclear flames in SN IA explosions. New Astron. 2, 239–244 (August 1997)

    Article  ADS  Google Scholar 

  50. Niemeyer J.C., Woosley S.E.: The thermonuclear explosion of Chandrasekhar mass white dwarfs. ApJ 475, 740–753 (February 1997)

    Article  ADS  Google Scholar 

  51. Nomoto K.: Accreting white dwarf models for Type I supernovae. I – presupernova evolution and triggering, mechanisms., ApJ, 253, 798–810, (February, 1982)

    Google Scholar 

  52. Nomoto K., Kondo Y.: Conditions for accretion-induced collapse of white dwarfs. Astrophys. J. Lett. 367, L19–L22 (January 1991)

    Article  ADS  Google Scholar 

  53. Nomoto K., Thielemann F.-K., Yokoi K.: Accreting white dwarf models of Type I supernovae. III—Carbon deflagration supernovae. ApJ 286, 644–658 (November 1984)

    Article  ADS  Google Scholar 

  54. Osher S., Sethian J.A.: Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. J. Comp. Phys. 79, 12–49 (November 1988)

    Article  ADS  MathSciNet  Google Scholar 

  55. Paquette C., Pelletier C., Fontaine G., Michaud G.: Diffusion coefficients for stellar plasmas. ApJS 61, 177–195 (May 1986)

    Article  ADS  Google Scholar 

  56. Perlmutter S., Aldering G., Goldhaber G., Knop R.A., Nugent P., Castro P.G., Deustua S., Fabbro S., Goobar A., Groom D.E., Hook I.M., Kim A.G., Kim M.Y., Lee J.C., Nunes N.J., Pain R., Pennypacker C.R., Quimby R., Lidman C., Ellis R.S., Irwin M., McMahon R.G., Ruiz-Lapuente P., Walton N., Schaefer B., Boyle B.J., Filippenko A.V., Matheson T., Fruchter A.S., Panagia N., Newberg H.J.M., Couch W.J.: The Supernova Cosmology Project.: Measurements of Omega and Lambda from 42 high-redshift supernovae. ApJ, 517, 565–586 (June 1999)

    Google Scholar 

  57. Peters N.: Laminar flamelet concepts in turbulent combustion. In Twenty-First Symposium (International) on Combustion, pp. 1231–1250. The Combustion Institute, Pittsburgh (1986)

    Google Scholar 

  58. Peters N.: The turbulent burning velocity for large-scale and small-scale turbulence. J. Fluid Mech. 384, 107–132 (April 1999)

    Article  ADS  Google Scholar 

  59. Peters N.: The turbulent burning velocity for large-scale and small-scale turbulence. J. Fluid Mech. 384, 107–132 (1999)

    Article  ADS  Google Scholar 

  60. Phillips M.M.: The absolute magnitudes of Type Ia supernovae. ApJ 413:L105–L108 (August 1993)

    Article  ADS  Google Scholar 

  61. Plewa T., Calder A.C., Lamb D.Q.: Type Ia supernova explosion: Gravitationally confined detonation. ApJ 612, L37–L40 (September 2004)

    Article  ADS  Google Scholar 

  62. Pocheau A.: Scale invariance in turbulent front propagation. Phys. Rev. E., 49, 1109–1122 (February 1994)

    Article  ADS  MathSciNet  Google Scholar 

  63. Pope S.B.: Tur Bulent Flows. Cambridge University Press, Cambridge (2000)

    Book  Google Scholar 

  64. Reinecke M., Hillebrandt W., Niemeyer J.C.: Thermonuclear explosions of Chandrasekhar-mass C+O white dwarfs. A&A 347, 739–747 (July 1999)

    Google Scholar 

  65. Reinecke, M., Hillebrandt, W., Niemeyer, J.C.: Refined numerical models for multidimensional Type Ia supernova simulations. A&A 386, 936–943 (May 2002)

    Google Scholar 

  66. Reinecke, M., Hillebrandt, W., Niemeyer, J.C.: Three-dimensional simulations of Type Ia supernovae. A&A 391, 1167–1172 (September 2002)

    Google Scholar 

  67. Reinecke, M., Hillebrandt, W., Niemeyer, J.C., Klein, R., Gröbl, A.: A new model for deflagration fronts in reactive fluids. A&A, 347, 724–733 (July 1999)

    Google Scholar 

  68. Reinecke, M., Niemeyer, J.C., Hillebrandt, W.: On the explosion mechanism of SNe Type Ia. New Astron. Rev. 46, 481–486 (July 2002)

    Article  ADS  Google Scholar 

  69. Reinecke, M.A.: Modeling and simulation of turbulent combustion in Type Ia supernovae. PhD thesis, Technical University of Munich (2001). available at http://tumb1.biblio.tu-muenchen.de/publ/diss/allgemein.html

  70. Riess, A.G., Filippenko, A.V., Challis, P., Clocchiatti, A., Diercks, A., Garnavich, P.M., Gilliland, R.L., Hogan, C.J., Jha, S., Kirshner, R.P., Leibundgut, B., Phillips, M.M., Reiss, D., Schmidt, B.P., Schommer, R.A., Smith, R.C., Spyromilio, J., Stubbs, C., Suntzeff, N.B., Tonry, J.: Observational evidence from supernovae for an accelerating universe and a cosmological constant. AJ. 116, 1009–1038 (September 1998)

    Article  ADS  Google Scholar 

  71. Röpke, F.K.: Following multi-dimensional type Ia supernova explosion models to homologous expansion. A&A 432, 969–983 (March 2005)

    Google Scholar 

  72. Röpke, F.K., Gieseler, M., Reinecke, M., Travaglio, C., Hillebrandt, W.: Type Ia supernova diversity in three-dimensional models. A&A 453, 203–217 (July 2006)

    Article  ADS  Google Scholar 

  73. Röpke, F.K., Hillebrandt, W.: Full-star type Ia supernova explosion models. A&A 431, 635–645 (February 2005)

    Google Scholar 

  74. Röpke, F.K., Hillebrandt, W.: The distributed burning regime in type Ia supernova models. A&A 429, L29–L32 (January 2005)

    Google Scholar 

  75. Röpke, F.K., Hillebrandt, W., Niemeyer, J.C.: The cellular burning regime in type Ia supernova explosions. I. Flame propagation into quiescent fuel. A&A 420, 411–422 (June 2004)

    Article  ADS  Google Scholar 

  76. Röpke, F.K., Hillebrandt, W., Niemeyer, J.C.: The cellular burning regime in type Ia supernova explosions. II. Flame propagation into vortical fuel. A&A 421, 783–795 (July 2004)

    Article  ADS  Google Scholar 

  77. Röpke, F.K., Hillebrandt, W., Niemeyer, J.C., Woosley, S.E.: Multi-spot ignition in type Ia supernova models. A&A 448, 1–14 (March 2006)

    Article  ADS  Google Scholar 

  78. Röpke, F.K., Niemeyer, J.C., Hillebrandt, W.: On the small-scale stability of thermonuclear flames in type Ia supernovae. ApJ 588, 952–961 (May 2003)

    Article  ADS  Google Scholar 

  79. Sagaut, P.: Large Eddy Simulation for Incompressible Flows. Springer, (2001)

    Google Scholar 

  80. Schmidt, W., Hillebrandt, W., Niemeyer, J.C.: Level set simulations of turbulent thermonuclear combustion in degenerate carbon and oxygen. Combust. Theory Modell. 9(4), 693–720 (2005)

    Article  ADS  Google Scholar 

  81. Schmidt, W., Hillebrandt, W., Niemeyer, J.C.: Numerical dissipation and the bottleneck effect in simulations of compressible isotropic turbulence. Comp. Fluids. 35, 353–371 (2006)

    Article  Google Scholar 

  82. Schmidt, W., Niemeyer, J.C.: Thermonuclear supernova simulations with stochastic ignition. A&A 446, 627–633 (February 2006)

    Article  ADS  Google Scholar 

  83. Schmidt, W., Niemeyer, J.C., Hillebrandt, W.: A localised subgrid scale model for fluid dynamical simulations in astrophysics. I. Theory and numerical tests. A&A 450, 265–281 (April 2006)

    Article  ADS  Google Scholar 

  84. Schmidt, W., Niemeyer, J.C., Hillebrandt, W., Röpke, F.K.: A localised subgrid scale model for fluid dynamical simulations in astrophysics. II. Application to type Ia supernovae. A&A 450, 283–294 (April 2006)

    Article  ADS  Google Scholar 

  85. Sethian, J.A.: Level Set Methods and Fast Marching Methods. University Press, Cambride (1999)

    MATH  Google Scholar 

  86. Sharp, D.H.: An overview of Rayleigh-Taylor instability. Physica D Nonlinear Phenomena 12, 3–3 (July 1984)

    Article  ADS  Google Scholar 

  87. Smiljanovski, V., Moser, V., Klein, R.: A capturing-tracking hybrid scheme for deflagration discontinuities. Combustion Theory and Model. 1, 183–215 (1997)

    Article  ADS  Google Scholar 

  88. Sussman, M., Smereka, P., Osher, S.: A level set approach for computing solutions to incompressible, two-phase, flow., J., Comp., Phys., 114(1), 146–159, (1994)

    Article  ADS  Google Scholar 

  89. Timmes, F.X., Woosley, S.E.: The conductive propagation of nuclear flames. I. degenerate C+O and O+Ne+Mg white dwarfs. ApJ 396, 649–667 (March 1992)

    Article  ADS  Google Scholar 

  90. Timmes, F.X., Woosley, S.E.: The conductive propagation of nuclar flames. I. Degenerate C+O and O+Ne+Mg white dwarfs. Astrophys. J. 396, 649–667 (1992)

    Article  ADS  Google Scholar 

  91. Travaglio, C., Hillebrandt, W., Reinecke, M., Thielemann, F.-K.: Nucleosynthesis in multi-dimensional SN Ia explosions. A&A 425, 1029–1040 (October 2004)

    Google Scholar 

  92. Woosley, S.E., Wunsch, S., Kuhlen, M.: Carbon Ignition in Type Ia Supernovae: An Analytic Model. ApJ 607, 921–930 (June 2004)

    Article  ADS  Google Scholar 

  93. Zel’dovich, Ya.B.: An effect which stabilizes the curved front of a laminar flame. J. Appl. Mech. Tech. Phys. 1, 68–69 (1966). English translation

    ADS  Google Scholar 

  94. Zwicky, F.: On collapsed neutron stars. ApJ 88, 522–525 (November 1938)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Röpke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Röpke, F., Schmidt, W. (2008). Turbulent Combustion in Thermonuclear Supernovae. In: Hillebrandt, W., Kupka, F. (eds) Interdisciplinary Aspects of Turbulence. Lecture Notes in Physics, vol 756. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78961-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-78961-1_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-78960-4

  • Online ISBN: 978-3-540-78961-1

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics