Skip to main content

On the Optimality of Dubins Paths across Heterogeneous Terrain

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4981))

Abstract

We derive optimality conditions for the paths of a Dubins vehicle when the state space is partitioned into two patches with different vehicle’s forward velocity. We recast this problem as a hybrid optimal control problem and solve it using optimality principles for hybrid systems. Among the optimality conditions, we derive a “refraction” law at the boundary of the patches which generalizes the so-called Snell’s law of refraction in optics to the case of paths with bounded maximum curvature.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dubins, L.E.: On curves of minimal length with a constraint on average curvature, and with prescribed initial and terminal positions and tangents. American Journal of Mathematics 79, 497–516 (1957)

    Article  MATH  MathSciNet  Google Scholar 

  2. Pontryagin, L.S., Boltyanskij, V.G., Gamkrelidze, R.V., Mishchenko, E.F.: The mathematical theory of optimal processes. Wiley, Chichester (1962)

    MATH  Google Scholar 

  3. Boissonnat, J.D., Cérézo, A., Leblond, J.: Shortest paths of bounded curvature in the plane. Journal of Intelligent and Robotic Systems 11, 5–20 (1994)

    Article  MATH  Google Scholar 

  4. Reeds, J.A., Shepp, L.A.: Optimal paths for a car that goes both forwards and backwards. Pacific Journal of Mathematics 145, 367–393 (1990)

    MathSciNet  Google Scholar 

  5. Sussmann, H.J., Tang, G.: Shortest paths for the Reeds-Shepp car a worked out example of the use of geometric techniques in nonlinear optimal control. Technical report, Rutgers Center for Systems and Control Technical Report (1991)

    Google Scholar 

  6. Alexander, R.S., Rowe, N.C.: Path planning by optimal-path-map construction for homogeneous-cost two-dimensional regions. In: Proc. IEEE International Conference on Robotics and Automation, pp. 1924–1929 (1990)

    Google Scholar 

  7. Rowe, N.C., Alexander, R.S.: Finding optimal-path maps for path planning across weighted regions. The International Journal of Robotics Research 19, 83–95 (2000)

    Article  Google Scholar 

  8. Shkel, A.M., Lumelsky, V.: Classification of the Dubins’ set. Robotics and Autonomous Systems 34, 179–202 (2001)

    Article  MATH  Google Scholar 

  9. Balkcom, D.J., Mason, M.T.: Time optimal trajectories for bounded velocity differential drive vehicles. The International J. Robotics Research 21, 199–217 (2002)

    Article  Google Scholar 

  10. Chitsaz, H., LaValle, S.M., Balkcom, D.J., Mason, M.T.: Minimum wheel-rotation paths for differential-drive mobile robots. In: Proceedings IEEE International Conference on Robotics and Automation (2006)

    Google Scholar 

  11. Sussmann, H.J.: Some recent results on the maximum principle of optimal control theory. In: Systems and Control in the Twenty-First Century, 351–372 (1997)

    Google Scholar 

  12. Sussmann, H.J.: A maximum principle for hybrid optimal control problems. In: Proc. 38th IEEE Conference on Decision and Control, pp. 425–430 (1999)

    Google Scholar 

  13. Garavello, M., Piccoli, B.: Hybrid necessary principle. SIAM J. Control Optim. 43(5), 1867–1887 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  14. Shaikh, M.S., Caines, P.E.: On the hybrid optimal control problem: Theory and algorithms. IEEE Transactions on Automatic Control 52, 1587–1603 (2007)

    Article  MathSciNet  Google Scholar 

  15. Piccoli, B.: Necessary conditions for hybrid optimization. In: Proceedings of the 38th IEEE Conference on Decision and Control, pp. 410–415 (1999)

    Google Scholar 

  16. D’Apice, C., Garavello, M., Manzo, R., Piccoli, B.: Hybrid optimal control: Case study of a car with gears. International Journal of Control 76, 1272–1284 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  17. Goebel, R., Hespanha, J., Teel, A., Cai, C., Sanfelice, R.: Hybrid systems: Generalized solutions and robust stability. In: Proc. 6th IFAC Symposium in Nonlinear Control Systems, pp. 1–12 (2004)

    Google Scholar 

  18. Goebel, R., Teel, A.: Solutions to hybrid inclusions via set and graphical convergence with stability theory applications. Automatica 42(4), 573–587 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  19. Sanfelice, R., Goebel, R., Teel, A.: Generalized solutions to hybrid dynamical systems. In: ESAIM: Control, Optimisation and Calculus of Variations (to appear, 2008)

    Google Scholar 

  20. Sussmann, H.J.: A nonsmooth hybrid maximum principle. In: Stability and Stabilization of Nonlinear Systems. Lecture Notes in Control and Information Sciences, pp. 325–354. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Magnus Egerstedt Bud Mishra

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sanfelice, R.G., Frazzoli, E. (2008). On the Optimality of Dubins Paths across Heterogeneous Terrain. In: Egerstedt, M., Mishra, B. (eds) Hybrid Systems: Computation and Control. HSCC 2008. Lecture Notes in Computer Science, vol 4981. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78929-1_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-78929-1_33

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-78928-4

  • Online ISBN: 978-3-540-78929-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics