Skip to main content

Modeling and Simulation of Biochemical Processes Using Stochastic Hybrid Systems: The Sugar Cataract Development Process

  • Conference paper
Hybrid Systems: Computation and Control (HSCC 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4981))

Included in the following conference series:

Abstract

As biomedical research advances there is an increasing need to model and simulate more complicated systems to better understand them. Since biochemical processes are inherently stochastic and often contain both continuous and discrete behavior, stochastic hybrid systems are an ideal modeling paradigm for capturing their dynamics. In this paper we present a framework for modeling biochemical systems and demonstrate the approach for the sugar cataract development process including two methods of modeling drug treatment. Further, we present a simulation method that uses second-order Taylor approximations for the continuous dynamics and an improved method for detecting boundary hits. We use the sugar cataract development process to demonstrate the results of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ghosh, R., Tomlin, C.: Symbolic reachable set computation of piecewise affine hybrid automata and its application to biological modeling: Delta-notch protein signalling. Sys. Bio. 1, 170–183 (2004)

    Article  Google Scholar 

  2. Alur, R., Belta, C., Ivanicic, F., Kumar, V., Mintz, M., Pappas, G., Rubin, H., Schug, J.: Hybrid modeling and simulation of biomolecular networks. In: Di Benedetto, M.D., Sangiovanni-Vincentelli, A.L. (eds.) HSCC 2001. LNCS, vol. 2034, pp. 19–33. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  3. Hespanha, J., Singh, A.: Stochastic models for chemically reacting systems using polynomial stochastic hybrid systems. Int. J. on Robust Cont., Special Issue on Control at Small Scales 15, 669–689 (2005)

    MATH  MathSciNet  Google Scholar 

  4. Hu, J., Wu, W., Sastry, S.: Modeling subtilin production in bacillus subtilis using stochastic hybrid systems. In: Alur, R., Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp. 417–431. Springer, Heidelberg (2004)

    Google Scholar 

  5. Drulhe, S., Ferrari-Trecate, G., de Jong, H., Viari, A.: Reconstruction of switching thresholds in piecewise-affine models of genetic regulatory networks. In: Hespanha, J.P., Tiwari, A. (eds.) HSCC 2006. LNCS, vol. 3927, pp. 184–199. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  6. Salis, H., Kaznessis, Y.: Accurate hybrid stochastic simulation of a system of coupled chemical or biochemical reactions. J. Chem. Phys. 122, 54–103 (2005)

    Article  Google Scholar 

  7. Ramos, M., Melo, A., Henriques, E., Gomes, J., Reuter, N., Maigret, B., Floriano, W., Nascimento, M.: Modeling enzyme-inhibitor interactions in serine proteases. Int. J. Quant. Chem. 74(3), 299–314 (1999)

    Article  Google Scholar 

  8. Marini, I., Bucchioni, L., Borella, P., Corso, A.D., Mura, U.: Sorbitol dehydrogenase from bovine lens: Purification and properties. Arch. Biochem. and Biophy. 340, 383–391 (1997)

    Article  Google Scholar 

  9. Mannella, R.: Absorbing boundaries and optimal stopping in a stochastic differential equation. Phys. Lett. A 254, 257–262 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  10. Lamm, G.: Extended brownian dynamics. iii. three dimensional diffusion. J. Chem. Phys. 80(6), 2845–2855 (1983)

    Article  MathSciNet  Google Scholar 

  11. Peters, E., Barenbrug, T.: Efficient brownian dynamics simulation of particles near walls. i. reflecting and absorbing walls. Physical Review 66, 1–7 (2002)

    Google Scholar 

  12. Elowitz, M., Levine, A., Siggia, E., Swain, P.: Stochastic gene expression in a single cell. Science 1183(297) (2002)

    Google Scholar 

  13. Bujorianu, M., Lygeros, J.: Theoretical foundations of general stochastic hybrid systems: Modeling and optimal control. In: IEEE Conf. on Dec. and Cont. (2004)

    Google Scholar 

  14. Koutsoukos, X., Riley, D.: Computational methods for reachability analysis of stochastic hybrid systems. In: Hespanha, J.P., Tiwari, A. (eds.) HSCC 2006. LNCS, vol. 3927, pp. 377–391. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  15. Bernadskiy, M., Sharykin, R., Alur, R.: Structured modeling of concurrent stochastic hybrid systems. In: Lakhnech, Y., Yovine, S. (eds.) FORMATS 2004 and FTRTFT 2004. LNCS, vol. 3253, pp. 309–324. Springer, Heidelberg (2004)

    Google Scholar 

  16. Riley, D., Koutsoukos, X., Riley, K.: Safety analysis of sugar cataract development using stochastic hybrid systems. In: Bemporad, A., Bicchi, A., Buttazzo, G. (eds.) HSCC 2007. LNCS, vol. 4416, pp. 758–761. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  17. Kloeden, P., Platen, E.: Numerical Solution of Stochastic Differential Equations. Springer, Heidelberg (1999)

    Google Scholar 

  18. Gobet, E.: Euler schemes and half-space approximation for the simulation of diffusion in a domain. ESAIM: Probability and Statistics 5, 261–297 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  19. Gillespie, D.: A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. J. Comp. Phys. 22, 403–434 (1976)

    Article  MathSciNet  Google Scholar 

  20. Auger, A., Chatelain, P., Koumoutsakos, P.: R-leaping: Accelerating the stochastic simulation algorithm by reaction leaps. J. Chem. Phys. 125, 84–103 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Magnus Egerstedt Bud Mishra

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Riley, D., Koutsoukos, X., Riley, K. (2008). Modeling and Simulation of Biochemical Processes Using Stochastic Hybrid Systems: The Sugar Cataract Development Process. In: Egerstedt, M., Mishra, B. (eds) Hybrid Systems: Computation and Control. HSCC 2008. Lecture Notes in Computer Science, vol 4981. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78929-1_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-78929-1_31

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-78928-4

  • Online ISBN: 978-3-540-78929-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics