Skip to main content

Observer-Based Control of Linear Complementarity Systems

  • Conference paper
Hybrid Systems: Computation and Control (HSCC 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4981))

Included in the following conference series:

Abstract

In this paper, we will present observer and output-based controller design methods for linear complementarity systems (LCS) employing a passivity approach. Given various inherent properties of LCS, such as the presence of state jumps, mode dynamics described by DAEs, and regions (“invariants”) for certain modes being lower dimensional, several proposed observers and controllers for other classes of hybrid dynamical systems do not apply. We will provide sufficient conditions for the observer design for a LCS, which is effective also in the presence of state jumps. Using the certainty equivalence approach we obtain output-based controllers for which we will derive a separation principle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. van der Schaft, A.J., Schumacher, J.M.: Complementarity modeling of hybrid systems. IEEE Transactions on Automatic Control 43, 483 (1998)

    Article  MATH  Google Scholar 

  2. Heemels, W., Schumacher, J., Weiland, S.: Linear complementarity systems. SIAM Journal on Applied Mathematics, 1234–1269 (2000)

    Google Scholar 

  3. Camlibel, M., Heemels, W., Schumacher, J.: On linear passive complementarity systems. European Journal of Control 8, 220–237 (2002)

    Article  Google Scholar 

  4. Shen, J., Pang, J.: Semicopositive lineaer complementarity systems. Intern. J. Robust and Nonlinear Control 17(15), 1367–1386 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  5. Camlibel, M.: Complementarity methods in the analysis of piecewise linear dynamical systems. PhD thesis Tilburg University (2001)

    Google Scholar 

  6. Brogliato, B.: Some perspectives on the analysis and control of complementarity systems. IEEE Trans Automatic Control 48, 918–935 (2003)

    Article  MathSciNet  Google Scholar 

  7. Brogliato, B., Daniilidis, A., Lemaréchal, C., Acary, V.: On the equivalence between complementarity systems, projected systems and differential inclusions. System and Control Letters 55, 45–51 (2006)

    Article  MATH  Google Scholar 

  8. Heemels, W., Schumacher, J., Weiland, S.: Projected dynamical systems in a complementarity formalism. Operations Research Letters 27(2), 83–91 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  9. Camlibel, M., Heemels, W., van der Schaft, A., Schumacher, J.: Switched networks and complementarity. IEEE Trans. Circuits Systems-I 50, 1036–1046 (2003)

    Article  Google Scholar 

  10. Camlibel, M., Heemels, W., Schumacher, J.: Consistency of a time-stepping method for a class of piecewise-linear networks. IEEE Trans. Circuits Systems-I 49(3), 349–357 (2002)

    Article  MathSciNet  Google Scholar 

  11. Lynch, N., Segala, R., Vaandrager, F., Weinberg, H.: Hybrid I/O automata. In: Proc. Workshop Verification and Control of Hybrid Systems, pp. 496–510 (1996)

    Google Scholar 

  12. Branicky, M., Borkar, V., Mitter, S.: A unified framework for hybrid control: model and optimal control theory. IEEE Trans. Automatic Control 43(1), 31–45 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  13. Lygeros, J., Johansson, K., Simic, S., Zhang, J., Sastry, S.: Dynamical properties of hybrid automata. IEEE Trans. Aut. Control 48(1) (2003)

    Google Scholar 

  14. Heemels, W., Camlibel, M., van der Schaft, A., Schumacher, J.: Modelling, well-posedness, and stability of switched electrical networks. In: Maler, O., Pnueli, A. (eds.) HSCC 2003. LNCS, vol. 2623, pp. 249–266. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  15. Cai, C., Teel, A., Goebel, R.: Smooth Lyapunov functions for hybrid systems. Part I: Existence is equivalent to robustness. IEEE Trans. Automatic Control 52(7), 1264–1277 (2007)

    Article  MathSciNet  Google Scholar 

  16. Sontag, E.: Nonlinear regulation: The piecewise linear approach. IEEE Trans. Automatic Control 26(2), 346–358 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  17. Heemels, W., De Schutter, B., Bemporad, A.: Equivalence of hybrid dynamical models. Automatica 37(7) (2001)

    Google Scholar 

  18. De Schutter, B., van den Boom, T.: On model predictive control for max-min-plus-scaling discrete event systems. Automatica 37(7), 1049–1056 (2001)

    Article  MATH  Google Scholar 

  19. Bemporad, A., Morari, M.: Control of systems integrating logic, dynamics, and constraints. Automatica 35, 407–427 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  20. Alessandri, A., Coletta, P.: Design of Luenberger observers for a class of hybrid linear systems. In: Di Benedetto, M.D., Sangiovanni-Vincentelli, A.L. (eds.) HSCC 2001. LNCS, vol. 2034, pp. 7–18. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  21. Iulia Bara, G., Daafouz, J., Kratz, F., Iung, C.: State estimation for a class of hybrid systems. In: Int. Conf. Automation of Mixed Processes, pp. 313–316 (2000)

    Google Scholar 

  22. Petterson, S.: Switched state jump observers for switched systems. In: Proceedings of the IFAC World Congress, Prague, Czech Republic (2005)

    Google Scholar 

  23. Juloski, A., Heemels, W., Weiland, S.: Observer design for a class of piecewise linear systems. Intern. J. Robust and Nonlinear Control 17(15), 1387–1404 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  24. Pavlov, A., van de Wouw, N., Nijmeijer, H.: Convergent piecewise affine systems: analysis and design. In: Proc. CDC/ECC, Sevilla, Spain (2005)

    Google Scholar 

  25. Arcak, M., Kokotović, P.: Observer based control of systems with slope-restricted nonlinearities. IEEE Trans. Automatic Control 46(7), 1146–1150 (2001)

    Article  MATH  Google Scholar 

  26. Arcak, M.: Certainty-equivalence output-feedback design with circle-criterion observers. IEEE Trans. Automatic Control 50, 905–909 (2005)

    Article  MathSciNet  Google Scholar 

  27. Fan, X., Arcak, M.: Observer design for systems with multivariable monotone nonlinearities. Systems and Control Letters 50, 319–330 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  28. Rajamani, R.: Observers for Lipschitz nonlinear systems. IEEE Trans. Aut. Control 43, 397–401 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  29. Osorio, M., Moreno, J.: Dissipative design of observers for multivalued nonlinear systems. In: Proc. CDC, pp. 5400–5405 (2006)

    Google Scholar 

  30. Cottle, R., Pang, J.S., Stone, R.: The Linear Complementarity Problem. Academic Press, Boston (1992)

    MATH  Google Scholar 

  31. Willems, J.: Dissipative dynamical systems. Archive for Rational Mechanics and Analysis 45, 321–393 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  32. Heemels, W., Camlibel, M., Brogliato, B., Schumacher, J.: Observer-based control of linear complementarity systems. Technical report, Eindhoven University of Technology, Department of Mechanical Engineering, DCT report DCT 2008.002 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Magnus Egerstedt Bud Mishra

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Heemels, W.P.M.H., Camlibel, M.K., Brogliato, B., Schumacher, J.M. (2008). Observer-Based Control of Linear Complementarity Systems. In: Egerstedt, M., Mishra, B. (eds) Hybrid Systems: Computation and Control. HSCC 2008. Lecture Notes in Computer Science, vol 4981. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78929-1_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-78929-1_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-78928-4

  • Online ISBN: 978-3-540-78929-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics