Skip to main content

Anytime Control Algorithms for Embedded Real-Time Systems

  • Conference paper
Hybrid Systems: Computation and Control (HSCC 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4981))

Included in the following conference series:

Abstract

In this paper we consider the problem of designing controllers for linear plants to be implemented in embedded platforms under stringent real-time constraints. These include preemptive scheduling schemes, under which the maximum execution time allowed for control software tasks is uncertain. We propose an “anytime control” design approach, consisting in a hierarchy of controllers for the same plant. Higher controllers in the hierarchy provide better closed-loop performance, while typically requiring a larger worst-case execution time. We provide a procedure for the design of controllers which, together with a conditioning process of the stochastic scheduling, provides better performance than prevailing worst case-based design, while guaranteeing almost sure stability of the resulting switching system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Liu, C.L., Layland, J.W.: Scheduling algorithms for multiprogramming in a hard-real-time environment. Journal of the Association for Computing Machinery 20(1) (1973)

    Google Scholar 

  2. Liu, J.W.S.: Real–Time Systems. Prentice Hall Inc., Upper Saddle River, NJ (2000)

    Google Scholar 

  3. Buttazzo, G.: Hard Real-Time Computing Systems: Predictable Scheduling Algorithms and Applications. Kluwer Academic Publishers, Boston (1997)

    MATH  Google Scholar 

  4. Liu, J.W.S., Lin, K.J., Shih, W.K., Bettati, R., Chung, J.Y.: Imprecise computation. Proceedings of the IEEE 82(1), 83–93 (1994)

    Article  Google Scholar 

  5. Liu, J.W.S., Lin, K.J., Shih, W.K., Yu, A.C.S., Chung, J.Y., Zhao, W.: Algorithms for scheduling imprecise computations. Computer 24(5), 58–68 (1991)

    Article  Google Scholar 

  6. Perrin, N., Ferri, B.: Digital filters with adaptive length for real–time applications. In: Le Royal Meridien, K.E., (ed.) Proc. IEEE Real-Time and Embedded Technology and Applications Symposium, Toronto, Canada (May 2004)

    Google Scholar 

  7. Bhattacharya, R., Balas, G.J.: Implementation of control algorithms in an environment of dynamically scheduled CPU time using balanced truncation. In: AIAA Guidance, Navigation, and Control Conference and Exhibit, Monterey, CA (August 2002)

    Google Scholar 

  8. Bhattacharya, R., Balas, G.J.: Anytime control algorithm: Model reduction approach. Journal of Guidance, Control, and Dynamics 27(5), 767–776 (2004)

    Article  Google Scholar 

  9. Branicky, M.S.: Stability of hybrid systems: State of the art. In: Proc. 36th IEEE Conf. On Decision and Control, San Diego, California, USA, pp. 120–125 (December 1997)

    Google Scholar 

  10. DeCarlo, R.A., Branicky, M.S., Pettersson, S., Lennartson, B.: Perspectives and results on the stability and stabilizability of hybrid systems. IEEE Proceedings 88(7), 1069–1082 (2000)

    Article  Google Scholar 

  11. Liberzon, D., Morse, A.S.: Basic problems in stability and design of switched systems. IEEE Contr. Syst. Mag. 19(5), 59–70 (1999)

    Article  Google Scholar 

  12. Ye, H., Michel, A.N., Hou, L.: Stability theory for hybrid dynamical systems. IEEE Trans. Automat. Contr. 43(4), 461–474 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  13. Hespanha, J.P., Morse, A.S.: Switching between stabilizing controllers. Automatica 38(11), 1905–1917 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  14. Wicks, M.A., Peleties, P., DeCarlo, R.: Construction of piecewise Lyapunov functions for stabilizing switched systems. In: Proc. 33rd IEEE Conf. On Decision and Control, Lake Buena Vista, FL, pp. 3492–3497 (December 1994)

    Google Scholar 

  15. Wicks, M., DeCarlo, R.: Solution of coupled Lyapunov equations for the stabilization of multimodal linear systems. In: Proc. American Control Conf., Albuquerque, NM, pp. 1709–1713 (June 1997)

    Google Scholar 

  16. Pettersson, S., Lennartson, B.: Stabilization of hybrid systems using a min-projection strategy. In: Proc. American Control Conf., Arlington, Virginia, pp. 223–228 (June 2001)

    Google Scholar 

  17. Greco, L., Fontanelli, D., Bicchi, A.: Almost sure stability of anytime controllers via stochastic scheduling. In: Proc. IEEE Int. Conf. on Decision and Control, New Orleans, LO (December 2007)

    Google Scholar 

  18. Fang, Y., Loparo, K.A., Feng, X.: Almost sure and δ-moment stability of jump linear systems. Int. J. Control 59(5), 1281–1307 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  19. Bolzern, P., Colaneri, P., De Nicolao, G.: On almost sure stability of discrete-time Markov jump linear systems. In: Proc. 43rd IEEE Conf. On Decision and Control, vol. 3, pp. 3204–3208 (2004)

    Google Scholar 

  20. Cervin, A., Lincoln, B., Eker, J., Årzén, K.E., Buttazzo, G.: The jitter margin and its application in the design of real-time control systems. In: Proc. 10th Int. Conf. on Real-Time and Embedded Computing Systems and Applications, Gothenburg, Sweden (August 2004)

    Google Scholar 

  21. Liberzon, D., Hespanha, J.P., Morse, A.S.: Stability of switched systems: A Lie-algebraic condition. Systems & Control Letters 37(3), 117–122 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  22. Åström, K.J., Wittenmark, B.: Computer Controlled Systems. Prentice-Hall, Englewood Cliffs (1996)

    Google Scholar 

  23. Furuta, K., Yamakita, M., Kobayashi, S.: Swing-up control of inverted pendulum using pseudo-state feedback. Proceedings of the Institution of Mechanical Engineers. Pt.I. Journal of Systems and Control Engineering 206(I4), 263–269 (1992)

    Article  Google Scholar 

  24. Bupp, R., Bernstein, D., Coppola, V.: A benchmark problem for nonlinear control design: Problem statement, experimental testbed and passive, nonlinear compensation. In: Proc. Amer. Contr. Conf, pp. 4363–4367 (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Magnus Egerstedt Bud Mishra

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fontanelli, D., Greco, L., Bicchi, A. (2008). Anytime Control Algorithms for Embedded Real-Time Systems. In: Egerstedt, M., Mishra, B. (eds) Hybrid Systems: Computation and Control. HSCC 2008. Lecture Notes in Computer Science, vol 4981. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78929-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-78929-1_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-78928-4

  • Online ISBN: 978-3-540-78929-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics