Skip to main content

Mathematical Models of Influenza: The Role of Cross-Immunity, Quarantine and Age-Structure

  • Chapter

Part of the book series: Lecture Notes in Mathematics ((LNMBIOS,volume 1945))

This chapter compiles some of the results on influenza dynamics that involve a single strain, as well as two competing strains. The emphasis is on the role of cross-immunity, quarantine and age-structure as mechanisms capable of supporting recurrent influenza epidemic outbreaks. Quarantine or age-structure alone can support oscillations while cross-immunity enhances the likelihood of strain coexistence and impacts the length of the period. It is the hope that the perspective provided here will instigate others to use mathematical models in the study of disease transmission and its evolution, particularly in a setting that involves highly variable pathogens.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   69.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Anderson and R. May, Infectious Diseases of Humans: Dynamics and Control, Oxford University Press, Oxford, 1991

    Google Scholar 

  2. G. W. Anderson, R. N. Arnstein and M. R. Lester, Communicable Disease Control, Macmillan, New York, 1962

    Google Scholar 

  3. S. P. Blythe and C. Castillo-Chavez, Like with like preference and sexual mixing models, Math. Biosci., 96, 221–238, 1989

    Article  MATH  Google Scholar 

  4. F. Brauer and C. Castillo-Chavez, Mathematical Models in Populations Biology and Epidemiology, Springer, Berlin Heidelberg New York, 2001

    Google Scholar 

  5. S. N. Busenberg and C. Castillo-Chavez, A general solution of the problem of mixing of subpopulations and its application to risk and age-structure models for the spread of AIDS, IMA J. Math. Appl. Med. Biol., 8, 1–29, 1991

    Article  MATH  MathSciNet  Google Scholar 

  6. C. Castillo-Chavez, H. W. Hethcote, V. Andreasen, S. A. Levin and W. M. Liu, Cross-immunity in the dynamics of homogeneous and heterogeneous populations. In Mathematical Ecology (Trieste, 1986), World Scientific Publishing, NJ, 303–316, 1988

    Google Scholar 

  7. C. Castillo-Chavez, H. W. Hethcote, V. Andreasen, S. A. Levin and W. M. Liu, Epidemiological models with age structure, proportionate mixing, and cross-immunity, J. Math. Biol., 27, 233–258, 1989

    Article  MATH  MathSciNet  Google Scholar 

  8. CDC (Centers for Disease Control), Recent Avian Influenza Outbreaks in Asia, http://www.cdc.gov/flu/avian/outbreaks/asia.htm (April 26, 2005)

  9. R. B. Couch and J. A. Kasel, Immunity to influenza in man, Annu. Rev. Microbiol., 31, 529–549, 1983

    Article  Google Scholar 

  10. K. Dietz, Epidemiological interference of virus populations, J. Math. Biol., 8, 291–300, 1979

    MATH  MathSciNet  Google Scholar 

  11. M. Erdem, Epidemics in structured populations with isolation and cross-immunity, Ph.D. thesis, Arizona State University-Main, Tempe, August, 2007

    Google Scholar 

  12. Z. Feng, Multi-annual outbreaks of childhood diseases: revisited the impact of isolation, Thesis, Arizona State University, 1994

    Google Scholar 

  13. Z. Feng and H. R. Thieme, Recurrent outbreaks of childhood diseases revisited: the impact of isolation, J. Math. Biosci., 128, 93–130, 1995

    Article  MATH  MathSciNet  Google Scholar 

  14. J. P. Fox, C. E. Hall, M. K. Cooney and H. M. Foy, Influenza virus infections in Seattle families, 1975–1979, Am. J. Epidemiol., 116, 212–227, 1982

    Google Scholar 

  15. W. P. Glezen and R. B. Couch, Interpandemic influenza in the Houston area, 1974–76, N. Engl. J. Med., 298, 11, 587–592, 1978

    Article  Google Scholar 

  16. H. W. Hethcote, Qualitative analyses of communicable disease models, Math. Biosci., 28, 335–356, 1976

    Article  MATH  MathSciNet  Google Scholar 

  17. H. W. Hethcote and S. A. Levin, Periodicity in epidemiological modeling. In Applied Mathematical Ecology, Biomathematics 18, Springer, Berlin Heidelberg New York, 193–211, 1989

    Google Scholar 

  18. H. W. Hethcote, The mathematics of infectious diseases, SIAM Rev., 42(4), 599–653, 2000

    Article  MATH  MathSciNet  Google Scholar 

  19. H. W. Hethcote, M. Zhien and L. Shengbing, Effects of quarantine in six endemic models for infectious diseases, Math. Biosci., 180, 141–160, 2002

    Article  MATH  MathSciNet  Google Scholar 

  20. F. Hoppensteadt, An age dependent epidemic model, J. Franklin Inst., 297, 325–333, 1974

    Article  MATH  Google Scholar 

  21. W. O. Kermack and A. G. McKendrick, Contributions to the mathematical theory of epidemics part I, Proc. R. Soc. Edinb., A115, 700–721, 1927

    Article  Google Scholar 

  22. M. Nuño, Z. Feng, M. Martcheva, C. C. Chavez, Dynamics of two-strain influenza with isolation and cross-protection, SIAM J. Appl. Math., 65, 3, 964–982, 2005

    Article  MATH  MathSciNet  Google Scholar 

  23. M. M. Sigel, A. W. Kitts, A. B. Light and W. Henle, The recurrence of influenza A-prime in a boarding school after two years, J. Immunol., 64, 33, 1950

    Google Scholar 

  24. A. J. Smith and J. R. Davies, Natural infection with influenza A (H3N2). The development, persistence and effect of antibodies to the surface antigens, J. Hyg. (Lond.), 77, 271–282, 1976

    Google Scholar 

  25. C. H. Stuart-Harris, Epidemiology of influenza in man, Br. Med. Bull., 35, 3–8,1979

    Google Scholar 

  26. L. H. Taber, A. Paredes, W. P. Glezen and R. B. Couch, Infection with influenza A/Victoria virus in Houston families, 1976, J. Hyg. (Lond.), 86, 303–313, 1981

    Google Scholar 

  27. S. B. Thacker, The persistence of influenza in human populations, Epidemiol. Rev., 8, 129–142, 1986

    Google Scholar 

  28. H. R. Thieme, Asymptotic estimates of the solutions of nonlinear integral equations and asymptotic speeds for the spread of populations, J. Reine Angew. Math., 306, 94–121, 1979

    MATH  MathSciNet  Google Scholar 

  29. L. Wu and Z. Feng, Homoclinic bifurcation in an SIQR model for childhood disease, J. Differ. Equ., 168, 150–167, 2000

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nuño, M., Castillo-Chavez, C., Feng, Z., Martcheva, M. (2008). Mathematical Models of Influenza: The Role of Cross-Immunity, Quarantine and Age-Structure. In: Brauer, F., van den Driessche, P., Wu, J. (eds) Mathematical Epidemiology. Lecture Notes in Mathematics, vol 1945. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78911-6_13

Download citation

Publish with us

Policies and ethics