Skip to main content

A Light Introduction to Modelling Recurrent Epidemics

  • Chapter
Mathematical Epidemiology

Part of the book series: Lecture Notes in Mathematics ((LNMBIOS,volume 1945))

Epidemics of many infectious diseases occur periodically. Why?

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. S. Bartlett. Stochastic population models in ecology and epidemiology, volume 4 of Methuen’s Monographs on Applied Probability and Statistics. Spottiswoode, Ballantyne, London, 1960.

    MATH  Google Scholar 

  2. N. T. J. Bailey. The Mathematical Theory of Infectious Diseases and Its Applications. Hafner, New York, second edition, 1975.

    MATH  Google Scholar 

  3. R. M. Anderson and R. M. May. Infectious Diseases of Humans: Dynamics and Control. Oxford University Press, Oxford, 1991.

    Google Scholar 

  4. D. J. Daley and J. Gani. Epidemic modelling, an introduction, volume 15 of Cambridge: Studies in Mathematical Biology. Cambridge university press, Cambridge, 1999.

    MATH  Google Scholar 

  5. H. Andersson and T. Britton. Stochastic epidemic models and their statistical analysis, volume 151 of Lecture Notes in Statistics. Springer, New York, 2000.

    MATH  Google Scholar 

  6. O. Diekmann and J. A. P. Heesterbeek. Mathematical epidemiology of infectious diseases: model building, analysis and interpretation. Wiley Series in Mathematical and Computational Biology. Wiley, New York, 2000.

    Google Scholar 

  7. F. Brauer and C. Castillo-Chavez. Mathematical models in population biology and epidemiology, volume 40 of Texts in Applied Mathematics. Springer, New York, 2001.

    MATH  Google Scholar 

  8. D. Mollison, editor. Epidemic Models: Their Structure and Relation to Data. Publications of the Newton Institute. Cambridge University Press, Cambridge, 1995.

    MATH  Google Scholar 

  9. V. Isham and G. Medley, editors. Models for Infectious Human Diseases: Their Structure and Relation to Data. Publications of the Newton Institute. Cambridge University Press, Cambridge, 1996.

    MATH  Google Scholar 

  10. B. T. Grenfell and A. P. Dobson, editors. Ecology of Infectious Diseases in Natural Populations. Publications of the Newton Institute. Cambridge University Press, Cambridge, 1995.

    MATH  Google Scholar 

  11. C. Castillo-Chavez, with S. Blower, P. van den Driessche, D. Kirschner, and A-A. Yakubu, editors. Mathematical approaches for emerging and reemerging infectious diseases: an introduction, volume 125 of The IMA Volumes in Mathematics and Its Applications. Springer, New York, 2002.

    Google Scholar 

  12. C. Castillo-Chavez, with S. Blower, P. van den Driessche, D. Kirschner, and A-A. Yakubu, editors. Mathematical approaches for emerging and reemerging infectious diseases: models, methods and theory, volume 126 of The IMA Volumes in Mathematics and Its Applications. Springer, New York, 2002.

    Google Scholar 

  13. F. Brauer, P. van den Driessche and J. Wu, editors. Mathematical Epidemiology (this volume).

    Google Scholar 

  14. D. J. D. Earn. Mathematical modelling of recurrent epidemics. Pi in the Sky, 8:14–17, 2004.

    Google Scholar 

  15. W. O. Kermack and A. G. McKendrick. A contribution to the mathematical theory of epidemics. Proceedings of the Royal Society of London Series A, 115:700–721, 1927.

    Article  Google Scholar 

  16. M. J. Keeling and C. A. Gilligan. Metapopulation dynamics of bubonic plague. Nature, 407:903–906, 2000.

    Article  Google Scholar 

  17. D. Hughes-Hallett, A. M. Gleason, P. F. Lock, D. E. Flath, S. P. Gordon, D. O. Lomen, D. Lovelock, W. G. McCallum, B. G. Osgood, D. Quinney, A. Pasquale, K. Rhea, J. Tecosky-Feldman, J. B. Thrash, and T. W. Tucker. Applied Calculus. Wiley, Toronto, second edition, 2002.

    Google Scholar 

  18. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical Recipes in C. Cambridge University Press, Cambridge, second edition, 1992.

    MATH  Google Scholar 

  19. S. Wiggins. Introduction to applied nonlinear dynamical systems and chaos, volume 2 of Texts in Applied Mathematics. Springer, New York, 2 edition, 2003.

    MATH  Google Scholar 

  20. A. Korobeinikov and P. K. Maini. A Lyapunov function and global properties for SIR and SEIR epidemiological models with nonlinear incidence. Mathematical Biosciences and Engineering, 1(1):57–60, 2004.

    MATH  MathSciNet  Google Scholar 

  21. D. T. Gillespie. A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. Journal of Computational Physics, 22:403–434, 1976.

    Article  MathSciNet  Google Scholar 

  22. J. Gleick. Chaos. Abacus, London, 1987.

    MATH  Google Scholar 

  23. S. H. Strogatz. Nonlinear Dynamics and Chaos. Addison Wesley, New York, 1994.

    Google Scholar 

  24. D. J. D. Earn, P. Rohani, B. M. Bolker, and B. T. Grenfell. A simple model for complex dynamical transitions in epidemics. Science, 287(5453):667–670, 2000.

    Article  Google Scholar 

  25. C. T. Bauch and D. J. D. Earn. Transients and attractors in epidemics. Proceedings of the Royal Society of London Series B-Biological Sciences, 270(1524):1573–1578, 2003.

    Article  Google Scholar 

  26. J. Dushoff, J. B. Plotkin, S. A. Levin, and D. J. D. Earn. Dynamical resonance can account for seasonality of influenza epidemics. Proceedings of the National Academy of Sciences of the United States of America, 101(48):16915–16916, 2004.

    Article  Google Scholar 

  27. D. J. D. Earn, J. Dushoff, and S. A. Levin. Ecology and evolution of the flu. Trends in Ecology and Evolution, 17(7):334–340, 2002.

    Article  Google Scholar 

  28. IIDDA. The International Infectious Disease Data Archive, http://iidda.mcmaster.ca .

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Earn, D.J.D. (2008). A Light Introduction to Modelling Recurrent Epidemics. In: Brauer, F., van den Driessche, P., Wu, J. (eds) Mathematical Epidemiology. Lecture Notes in Mathematics, vol 1945. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78911-6_1

Download citation

Publish with us

Policies and ethics