Skip to main content

Radiological Tele-immersion

  • Chapter
Teleradiology
  • 816 Accesses

Abstract

It is important to make patient-specific data quickly available and usable to many specialists at different geographical sites. A tele-immersive radiological system has been developed for remote consultation, surgical preplanning, postoperative evaluation, and education. Tele-immersive devices include personal augmented reality immersive system, configurable wall, physician’s personal virtual reality display, ImmersaDesk, volume rendering, cluster-based visualization of large-scale volumetric data, tele-immersive collaboration, and system implementation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ai Z et al (2002) Tele-immersive medical educational environment. Stud Health Technol Inform 85:24-30

    PubMed  Google Scholar 

  2. Cabral B, Cam N, Foran J (1994) Accelerated volume rendering and tomographic recon-struction using texture mapping hardware. In: Proceedings of the 1994 symposium on Volume visualization. Tysons Corner 91-98

    Google Scholar 

  3. Cruz-Neira C, Sandin DJ, DeFanti TA (1993) Surround-screen projection-based virtual reality: the design and implementation of the CAVE. In: Proceedings of SIGGRAPH 93. ACM New York, NY, USA, pp 135-142

    Google Scholar 

  4. Czernuszenko M et al (1997) The ImmersaDesk and infinity wall projection-based virtual reality displays. Comput Graph 31:46-49

    Google Scholar 

  5. Hendin O, John NW, Shocet O (1998) Medical volume rendering over the WWW using VRML and Java. In: Proceedings of medicine meets virtual reality. Edited by James D. Westwood, Helene M. Hoffman, Don Stredney and Suzanne J. Weghorst. Published by IOS/Ohmsha Press - Amsterdam/Berlin/Oxford/Tokyo/Washington, DC, p 409

    Google Scholar 

  6. http://www.sensable.com/haptic-phantom-desktop.htm. Last Accessed 02 May 2008

  7. Kajiya JT, Herzen BPV (1984) Ray tracing volume densities. In: Proceedings of the SIG-GRAPH’84. 18:165-174

    Google Scholar 

  8. Leigh J, Johnson AE, DeFanti TA (1997) Global tele-immersion: better than being there. In: Proceedings of ICAT’97 Tokyo, Japan, Dec 3-5

    Google Scholar 

  9. Leigh J, Johnson A, DeFanti T, Bailey S, and Grossman R (1999) A tele-immersive envi-ronment for collaborative exploratory analysis of massive data sets. In: Proceedings of ASCI 99, Heijen, the Netherlands

    Google Scholar 

  10. Leigh J, Yee O, Schonfeld D, Ansari R, et al (2001) Adaptive networking for tele-immer-sion. In: Proceedings of the Immersive Projection Technology/Eurographics Virtual Envi-ronments Workshop (IPT/EGVE), May 16-18, Stuttgart, Germany

    Google Scholar 

  11. Magallon M, Hopf M, Ertl T (2001) Parallel volume rendering using PC graphics hardware. In: Ninth pacific conference on computer graphics and applications (Pacific Graphics’01)

    Google Scholar 

  12. Pearl RK, Evenhouse R, Rasmussen M, et al (1999) The virtual pelvic floor, a tele- immersive educational environment. Proc AMIA Symp 345-348

    Google Scholar 

  13. Porter T, Duff T (1984) Compositing digital images. Comput Graph 18: 253-259

    Article  Google Scholar 

  14. Rasmussen M et al (1998) The virtual temporal bone, a tele-immersive educational envi-ronment. Future Gener Comput Syst 125-130

    Google Scholar 

  15. Rezk-Salama C, et al (2000) Interactive Volume Rendering on Standard PC Graph-ics Hardware Using Multi-Textures and Multi-Stage Rasterization, 2000 Siggraph/ Eurographics Workshop Graphics Hardware, ACM Press, New York, pp 109-118

    Google Scholar 

  16. Schroeder W, Martin K, Lorensen B (1996) The visualization toolkit: an object-oriented approach to 3D graphics. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  17. Silverstein J, Rubenstein J, Millman A, and Panko W (1998) Web-based segmentation and display of 3-dimensional radiologic image data. In: Westwood JD, Hoffman HM, Stred-ney D, and Weghorst SJ, eds, Proceedings of Medicine Meets Virtual Reality, San Diego, Amsterdam, Jan, IOS Press, 6:53-59

    Google Scholar 

  18. Stredney D, Crawfis R, Wiet GJ, Sessanna D, Shareef N, and Bryan J (1999) Interactive vol-ume visualizations for synchronous and asynchronous remote collaboration. In: Westwood J.D. et al. (ed.) Medicine Meets Virtual Reality, IOS Press, 344-350

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ai, Z., Jin, B., Rasmussen, M. (2008). Radiological Tele-immersion. In: Kumar, S., Krupinski, E.A. (eds) Teleradiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78871-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-78871-3_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-78870-6

  • Online ISBN: 978-3-540-78871-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics