Skip to main content

Structure-Preserving Model Order Reduction of RCL Circuit Equations

  • Chapter

Part of the book series: Mathematics in Industry ((TECMI,volume 13))

Summary

In recent years, order-reduction techniques based on Krylov subspaces have become the methods of choice for generating macromodels of large multi-port RCL circuits. Despite the success of these techniques and the extensive research efforts in this area, for general RCL circuits, the existing Krylov subspace-based reduction algorithms do not fully preserve all essential structures of the given large RCL circuit. In this paper, we describe the problem of structure-preserving model order reduction of general RCL circuits, and we discuss two state-of-the-art algorithms, PRIMA and SPRIM, for the solution of this problem. Numerical results are reported that illustrate the higher accuracy of SPRIM vs. PRIMA. We also mention some open problems.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. I. Aliaga, D. L. Boley, R. W. Freund, and V. Hernández. A Lanczos-type method for multiple starting vectors. Math. Comp., 69:1577–1601, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  2. B. D. O. Anderson and S. Vongpanitlerd. Network Analysis and Synthesis. Prentice-Hall, Englewood Cliffs, New Jersey, 1973.

    Google Scholar 

  3. W. E. Arnoldi. The principle of minimized iterations in the solution of the matrix eigenvalue problem. Quart. Appl. Math., 9:17–29, 1951.

    MATH  MathSciNet  Google Scholar 

  4. Z. Bai, P. Feldmann, and R. W. Freund. How to make theoretically passive reduced-order models passive in practice. In Proc. IEEE 1998 Custom Integrated Circuits Conference, pages 207–210, Piscataway, New Jersey, 1998. IEEE.

    Google Scholar 

  5. G. A. Baker, Jr. and P. Graves-Morris. Padé Approximants. Cambridge University Press, New York, New York, Second edition, 1996.

    MATH  Google Scholar 

  6. M. Benzi, G. H. Golub, and J. Liesen. Numerical solution of saddle point problems. Acta Numerica, 14:1–137, 2005.

    Article  MATH  MathSciNet  Google Scholar 

  7. N. Deo. Graph Theory with Applications to Engineering and Computer Science. Prentice-Hall, Englewood Cliffs, New Jersey, 1974.

    MATH  Google Scholar 

  8. I. M. Elfadel and D. D. Ling. Zeros and passivity of Arnoldi-reduced-order models for interconnect networks. In Proc. 34nd ACM/IEEE Design Automation Conference, pages 28–33, New York, New York, 1997. ACM.

    Google Scholar 

  9. P. Feldmann and R. W. Freund. Efficient linear circuit analysis by Padé approximation via the Lanczos process. In Proceedings of EURO-DAC ’94 with EURO-VHDL ’94, pages 170–175, Los Alamitos, California, 1994. IEEE Computer Society Press.

    Google Scholar 

  10. P. Feldmann and R. W. Freund. Efficient linear circuit analysis by Padé approximation via the Lanczos process. IEEE Trans. Computer-Aided Design, 14:639–649, 1995.

    Article  Google Scholar 

  11. P. Feldmann and R. W. Freund. Reduced-order modeling of large linear subcircuits via a block Lanczos algorithm. In Proc. 32nd ACM/IEEE Design Automation Conference, pages 474–479, New York, New York, 1995. ACM.

    Chapter  Google Scholar 

  12. P. Feldmann and R. W. Freund. Interconnect-delay computation and signal-integrity verification using the SyMPVL algorithm. In Proc. 1997 European Conference on Circuit Theory and Design, pages 132–138, Los Alamitos, California, 1997. IEEE Computer Society Press.

    Google Scholar 

  13. R. W. Freund. Passive reduced-order models for interconnect simulation and their computation via Krylov-subspace algorithms. In Proc. 36th ACM/IEEE Design Automation Conference, pages 195–200, New York, New York, 1999. ACM.

    Chapter  Google Scholar 

  14. R. W. Freund. Reduced-order modeling techniques based on Krylov subspaces and their use in circuit simulation. In B. N. Datta, editor, Applied and Computational Control, Signals, and Circuits, Vol. 1, pages 435–498. Birkhäuser, Boston, 1999.

    Google Scholar 

  15. R. W. Freund. Krylov-subspace methods for reduced-order modeling in circuit simulation. J. Comput. Appl. Math., 123(1–2):395–421, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  16. R. W. Freund. Model reduction methods based on Krylov subspaces. Acta Numerica, 12: 267–319, 2003.

    Article  MATH  MathSciNet  Google Scholar 

  17. R. W. Freund. SPRIM: structure-preserving reduced-order interconnect macromodeling. In Tech. Dig. 2004 IEEE/ACM International Conference on Computer-Aided Design, pages 80–87, Los Alamitos, California, 2004. IEEE Computer Society Press.

    Google Scholar 

  18. R. W. Freund. Padé-type model reduction of second-order and higher-order linear dynamical systems. In P. Benner, V. Mehrmann, and D. C. Sorensen, editors, Dimension Reduction of Large-Scale Systems, Lecture Notes in Computational Science and Engineering, Vol. 45, pages 191–223, Berlin/Heidelberg, 2005. Springer-Verlag.

    Chapter  Google Scholar 

  19. R. W. Freund. On Padé-type model order reduction of J-Hermitian linear dynamical systems. Technical Report, Department of Mathematics, University of California, Davis, California, 2007. Available online at http://www.math.ucdavis.edu/~freund/reprints.html.

  20. R. W. Freund. The SPRIM algorithm for structure-preserving order reduction of general RCL circuits. Technical Report, Department of Mathematics, University of California, Davis, California, 2008. In preparation.

    Google Scholar 

  21. R. W. Freund and P. Feldmann. Reduced-order modeling of large passive linear circuits by means of the SyPVL algorithm. In Tech. Dig. 1996 IEEE/ACM International Conference on Computer-Aided Design, pages 280–287, Los Alamitos, California, 1996. IEEE Computer Society Press.

    Google Scholar 

  22. R. W. Freund and P. Feldmann. Small-signal circuit analysis and sensitivity computations with the PVL algorithm. IEEE Trans. Circuits and Systems—II: Analog and Digital Signal Processing, 43:577–585, 1996.

    Google Scholar 

  23. R. W. Freund and P. Feldmann. The SyMPVL algorithm and its applications to interconnect simulation. In Proc. 1997 International Conference on Simulation of Semiconductor Processes and Devices, pages 113–116, Piscataway, New Jersey, 1997. IEEE.

    Google Scholar 

  24. R. W. Freund and P. Feldmann. Reduced-order modeling of large linear passive multi-terminal circuits using matrix-Padé approximation. In Proc. Design, Automation and Test in Europe Conference 1998, pages 530–537, Los Alamitos, California, 1998. IEEE Computer Society Press.

    Google Scholar 

  25. E. J. Grimme. Krylov projection methods for model reduction. PhD Thesis, Department of Electrical Engineering, University of Illinois at Urbana-Champaign, Urbana-Champaign, Illinois, 1997.

    Google Scholar 

  26. C. Lanczos. An iteration method for the solution of the eigenvalue problem of linear differential and integral operators. J. Res. Nat. Bur. Standards, 45:255–282, 1950.

    MathSciNet  Google Scholar 

  27. R. Lozano, B. Brogliato, O. Egeland, and B. Maschke. Dissipative Systems Analysis and Control. Springer-Verlag, London, 2000.

    MATH  Google Scholar 

  28. A. Odabasioglu. Provably passive RLC circuit reduction. M.S. Thesis, Department of Electrical and Computer Engineering, Carnegie Mellon University, 1996.

    Google Scholar 

  29. A. Odabasioglu, M. Celik, and L. T. Pileggi. PRIMA: passive reduced-order interconnect macromodeling algorithm. In Tech. Dig. 1997 IEEE/ACM International Conference on Computer-Aided Design, pages 58–65, Los Alamitos, California, 1997. IEEE Computer Society Press.

    Google Scholar 

  30. A. Odabasioglu, M. Celik, and L. T. Pileggi. PRIMA: passive reduced-order interconnect macromodeling algorithm. IEEE Trans. Computer-Aided Design, 17(8):645–654, 1998.

    Article  Google Scholar 

  31. L. T. Pillage and R. A. Rohrer. Asymptotic waveform evaluation for timing analysis. IEEE Trans. Computer-Aided Design, 9:352–366, 1990.

    Article  Google Scholar 

  32. A. E. Ruehli. Equivalent circuit models for three-dimensional multiconductor systems. IEEE Trans. Microwave Theory Tech., 22:216–221, 1974.

    Article  Google Scholar 

  33. L. M. Silveira, M. Kamon, I. Elfadel, and J. White. A coordinate-transformed Arnoldi algorithm for generating guaranteed stable reduced-order models of RLC circuits. In Tech. Dig. 1996 IEEE/ACM International Conference on Computer-Aided Design, pages 288–294, Los Alamitos, California, 1996. IEEE Computer Society Press.

    Google Scholar 

  34. J. Vlach and K. Singhal. Computer Methods for Circuit Analysis and Design. Van Nostrand Reinhold, New York, New York, Second edition, 1994.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Freund, R.W. (2008). Structure-Preserving Model Order Reduction of RCL Circuit Equations. In: Schilders, W.H.A., van der Vorst, H.A., Rommes, J. (eds) Model Order Reduction: Theory, Research Aspects and Applications. Mathematics in Industry, vol 13. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78841-6_3

Download citation

Publish with us

Policies and ethics