Skip to main content

Data-Driven Model Order Reduction Using Orthonormal Vector Fitting

  • Chapter
Model Order Reduction: Theory, Research Aspects and Applications

Part of the book series: Mathematics in Industry ((TECMI,volume 13))

  • 6034 Accesses

Accurate frequency-domain macromodels are becoming increasingly important for the design, study and optimization of complex physical systems. These macromodels approximate the complex frequency-dependent input-output behaviour of broadband multi-port systems in the frequency domain by rational functions [28]. Unfortunately, due to the complexity of the physical systems under study and the dense discretization required for accurately modelling their behaviour, the rational or state-space macromodels may lead to unmanageable levels of storage and computational requirements. Therefore, Model Order Reduction (MOR) methods can be applied to build a model of reduced size, which captures the dynamics of the larger model as closely as possible.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adcock J., Potter, R.: A Frequency Domain Curve Fitting Algorithm with Improved Accuracy, Proceedings 3rd International Modal Analysis Conference, 1, 541–547 (1985).

    Google Scholar 

  2. Akcay, H., Ninness, B., Orthonormal Basis Functions for Modelling Continuous-Time Systems, Signal Processing, 77 (1), 261–274 (1999).

    Article  MATH  Google Scholar 

  3. Chahlaoui, Y., Van Dooren, P.: A Collection of Benchmark Examples for Model Reduction of Linear Time Invariant Dynamical Systems, SLICOT Working Note 2002-2 (2002).

    Google Scholar 

  4. Clement, P.R.: Laguerre Functions in Signal Analysis and Parameter Identification, Journal of the Franklin Institute, 313, 85–95 (1982).

    Article  MATH  Google Scholar 

  5. Deschrijver, D., Dhaene, T., Rational Modeling of Spectral Data using Orthonormal Vector Fitting, 9th IEEE Workshop on Signal Propagation on Interconnects, 111–114 (2005).

    Google Scholar 

  6. Deschrijver, D., Dhaene, T.: Broadband Macromodelling of Passive Components using Orthonormal Vector Fitting, IEE Electronics Letters, 41 (21), 1160–1161 (2005).

    Article  Google Scholar 

  7. Deschrijver, D., Dhaene, T.: Parametric Identification of Frequency Domain Systems Using Orthonormal Rational Bases, 14th IFAC Symposium on System Identification, 837–847 (2006).

    Google Scholar 

  8. Deschrijver, D., Gustavsen, B., Dhaene, T.: Advancements in Iterative Methods for Rational Approximation in the Frequency Domain, IEEE Transactions on Power Delivery, 22 (3), 1633–1642 (2007).

    Article  Google Scholar 

  9. Deschrijver, D., Haegeman, B., Dhaene, T.: Orthonormal Vector Fitting : A Robust Macromodeling Tool for Rational Approximation of Frequency Domain Responses, IEEE Transactions on Advanced Packaging, 30 (2), 216–225 (2007).

    Article  Google Scholar 

  10. Golub, G.H., Van Loan, C.F.: Matrix computations - Third Edition, London, The Johns Hopkins University Press (1996).

    Google Scholar 

  11. Gomez, J.C.: Analysis of Dynamic System Identification using Rational Orthonormal Bases, Phd Thesis, University of Newcastle (1998).

    Google Scholar 

  12. Grivet-Talocia, S.: Passivity Enforcement via Perturbation of Hamiltonian Matrices, IEEE Transactions on Circuits and Systems 1: Fundamental Theory and Applications, 51 (9), 1755–1769 (2004).

    Article  MathSciNet  Google Scholar 

  13. Gustavsen, B., Semlyen, A.: Rational Approximation of Frequency Domain Responses by Vector Fitting, IEEE Transactions on Power Delivery, 14 (3), 1052–1061 (1999).

    Article  Google Scholar 

  14. Gustavsen, B., Semlyen, A.: Enforcing Passivity for Admittance Matrices approximated by Rational Functions, IEEE Transactions on Power Systems, 16 (1), 97–104 (2001).

    Article  Google Scholar 

  15. Gustavsen, B.: Computer Code for Rational Approximation of Frequency Dependent Admittance Matrices, IEEE Transactions on Power Delivery, 17 (4), 1093–1098 (2002).

    Article  Google Scholar 

  16. Gustavsen, B.: Improving the Pole Relocating Properties of Vector Fitting, IEEE Transactions on Power Delivery, 21 (3), 1587–1592 (2006).

    Article  Google Scholar 

  17. Hendrickx, W., Deschrijver, D., Dhaene, T.: Some Remarks on the Vector Fitting Iteration, Post-Conference Proceedings of ECMI 2004, Mathematics in Industry, Springer-Verlag, 134–138 (2006).

    Google Scholar 

  18. Heuberger, P.S.C., Van Den Hof, P.M.J., Wahlberg B.: Modelling and Identification with Rational Orthogonal Basis Functions, London, Springer-Verlag (2005).

    Book  Google Scholar 

  19. Kalman, R.E., Design of a Self Optimizing Control System, Transactions ASME, 80, 468–478 (1958).

    Google Scholar 

  20. Kautz, W.H.: Transient Synthesis in the Time-Domain, IRE Transactions on Circuit Theory, 1, 29–39 (1954).

    Article  Google Scholar 

  21. Knockaert, L.: On Orthonormal Muntz-Laguerre Filters, IEEE Transactions on Signal Processing, 49 (4), 790–793 (2001).

    Article  MathSciNet  Google Scholar 

  22. Levenberg, K., A Method for the Solution of Certain Problems in Least Squares, Quarterly Journal on Applied Mathematics, 2, 164–168 (1944).

    MATH  MathSciNet  Google Scholar 

  23. Levi, E.C.: Complex Curve Fitting, IEEE Transactions on Automatic Control, AC-4, 37–43 (1959).

    Google Scholar 

  24. Malmquist, F.: Sur la Détermination d’une Classe de Fonctions Analytiques par leurs Valeurs dans un Ensemble donné de Points, Compte Rendus de Sixieme Congres de Mathematiciens Scandinaves, 253–259 (1926).

    Google Scholar 

  25. Marquardt D.: An Algorithm for Least-Squares Estimation of Nonlinear Parameters, SIAM Journal on Applied Mathematics, 11, 431–441 (1963).

    Article  MATH  MathSciNet  Google Scholar 

  26. Ninness, B., Gibson S., Weller, S.R.: Practical Aspects of using Orthonormal System Parameterisations in Estimation Problems, 12th IFAC Symposium on System Identification (2000).

    Google Scholar 

  27. Oliveira e Silva, T.: Rational Orthonormal Functions on the Unit Circle and on the Imaginary Axis, with Applications in System Identification (2005).

    Google Scholar 

  28. R. Pintelon and J. Schoukens, System Identification : A Frequency Domain Approach, Piscataway NJ (USA), IEEE Press (2000).

    Google Scholar 

  29. Pintelon, R., Guillaume, P., Rolain, Y., Schoukens, J., Hamme, H.V.: Parametric Identification of Transfer Functions in the Frequency Domain - a Survey, IEEE Transactions on Automatic Control, 39 (11), 2245–2260 (1994).

    Article  MATH  Google Scholar 

  30. Richardson, M., Formenti, D.L.: Parameter Estimation from Frequency Response Measurements using Rational Fraction Polynomials, Proceedings 1st International Modal Analysis Conference, 167–182 (1982).

    Google Scholar 

  31. Rolain, Y., Pintelon, R., Xu, K.Q., Vold, H.: Best Conditioned Parametric Identification of Transfer Function Models in the Frequency Domain, IEEE Transactions on Automatic Control, AC-40 (11), 1954–1960 (1995).

    Google Scholar 

  32. Sanathanan, C.K., Koerner, J., Transfer Function Synthesis as a Ratio of Two Complex Polynomials, IEEE Transactions on Automatic Control, AC-8, 56–58 (1963).

    Google Scholar 

  33. Takenaka, S.: On the Orthogonal Functions and a New Formula of Interpolation, Japanese Journal of Mathematics, 129–145 (1925).

    Google Scholar 

  34. Wahlberg, B., Makila, P., On Approximation of Stable Linear Dynamical Systems using Laguerre and Kautz Functions, Automatica, 32, 693–708 (1996).

    Article  MATH  MathSciNet  Google Scholar 

  35. Whitfield, A.H.: Asymptotic Behavior of Transfer Function Synthesis Methods, International Journal of Control, 45, 1083–1092 (1987).

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Deschrijver, D., Dhaene, T. (2008). Data-Driven Model Order Reduction Using Orthonormal Vector Fitting. In: Schilders, W.H.A., van der Vorst, H.A., Rommes, J. (eds) Model Order Reduction: Theory, Research Aspects and Applications. Mathematics in Industry, vol 13. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78841-6_16

Download citation

Publish with us

Policies and ethics