Skip to main content

Detecting Disease-Specific Dysregulated Pathways Via Analysis of Clinical Expression Profiles

  • Conference paper
Research in Computational Molecular Biology (RECOMB 2008)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 4955))

Abstract

We present a method for identifying connected gene subnetworks significantly enriched for genes that are dysregulated in specimens of a disease. These subnetworks provide a signature of the disease potentially useful for diagnosis, pinpoint possible pathways affected by the disease, and suggest targets for drug intervention. Our method uses microarray gene expression profiles derived in clinical case-control studies to identify genes significantly dysregulated in disease specimens, combined with protein interaction data to identify connected sets of genes. Our core algorithm searches for minimal connected subnetworks in which the number of dysregulated genes in each diseased sample exceeds a given threshold. We have applied the method in a study of Huntington’s disease caudate nucleus expression profiles and in a meta-analysis of breast cancer studies. In both cases the results were statistically significant and appeared to home in on compact pathways enriched with hallmarks of the diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bansal, M., Belcastro, V., Ambesi-Impiombato, A., di Bernardo, D.: How to infer gene networks from expression profiles. Molecular Systems Biology 3, 78 (2007)

    Google Scholar 

  2. van’t Veer, L., Dai, H., van de Vijver, M., He, Y., Hart, A., Mao, M., Peterse, H., van der Kooy, K., Marton, M., Witteveen, A., et al.: Gene expression profiling predicts clinical outcome of breast cancer. Nature 415, 530–536 (2002)

    Article  Google Scholar 

  3. Segal, E., Friedman, N., Kaminski, N., Regev, A., Koller, D.: From signatures to models: understanding cancer using microarrays. Nat Genet 37(suppl.), S38–S45 (2005)

    Article  Google Scholar 

  4. Subramanian, A., Tamayo, P., Mootha, V., Mukherjee, S., Ebert, B., Gillette, M., Paulovich, A., Pomeroy, S., Golub, T., Lander, E., Mesirov, J.: Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. PNAS 102, 15545–15550 (2005)

    Article  Google Scholar 

  5. Rapaport, F., Zinovyev, A., Dutreix, M., Barillot, E., Vert, J.: Classification of microarray data using gene networks. BMC Bioinformatics 8, 35 (2007)

    Article  Google Scholar 

  6. Ulitsky, I., Shamir, R.: Identification of functional modules using network topology and high-throughput data. BMC Systems Biology 1 (2007)

    Google Scholar 

  7. Segal, E., Wang, H., Koller, D.: Discovering molecular pathways from protein interaction and gene expression data. Bioinformatics 19, I264–I272 (2003)

    Article  Google Scholar 

  8. Ideker, T., Ozier, O., Schwikowski, B., Siegel, A.F.: Discovering regulatory and signalling circuits in molecular interaction networks. Bioinformatics 18, S233–S240 (2002)

    Google Scholar 

  9. Rajagopalan, D., Agarwal, P.: Inferring pathways from gene lists using a literature-derived network of biological relationships. Bioinformatics 21, 788–793 (2005)

    Article  Google Scholar 

  10. Cabusora, L., Sutton, E., Fulmer, A., Forst, C.: Differential network expression during drug and stress response. Bioinformatics 21, 2898–2905 (2005)

    Article  Google Scholar 

  11. Nacu, S., Critchley-Thorne, R., Lee, P., Holmes, S.: Gene expression network analysis and applications to immunology. Bioinformatics 23, 850 (2007)

    Article  Google Scholar 

  12. Liu, M., Liberzon, A., Kong, S., Lai, W., Park, P., Kohane, I., Kasif, S.: Network-based analysis of affected biological processes in type 2 diabetes models. PLoS Genetics 3, e96+ (2007)

    Article  Google Scholar 

  13. Breitling, R., Amtmann, A., Herzyk, P.: Graph-based iterative group analysis enhances microarray interpretation. BMC Bioinformatics 5, 100 (2004)

    Article  Google Scholar 

  14. Chuang, H., Lee, E., Liu, Y., Lee, D., Ideker, T.: Network-based classification of breast cancer metastasis. Mol. Syst. Biol. 3 (2007)

    Google Scholar 

  15. Hochbaum, D.S.: Approximating covering and packing problems: set cover, vertex cover, independent set, and related problems. In: Hochbaum, D.S. (ed.) Approximation algorithms for NP-hard problems, PWS, Boston, pp. 94–143 (1997)

    Google Scholar 

  16. Dobson, G.: Worst-case analysis of greedy heuristics for integer programming with non-negative data. Mathematics of Operations Research 7, 515–531 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  17. Shuai, T., Hu, X.: Connected set cover problem and its applications. In: Cheng, S.-W., Poon, C.K. (eds.) AAIM 2006. LNCS, vol. 4041, pp. 243–254. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  18. Cormen, T.H., Leiserson, C.E., Rivest, R.L.: Introduction to Algorithms. MIT Press, Cambridge (1990)

    MATH  Google Scholar 

  19. Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., Alon, U.: Network motifs: simple building blocks of complex networks. Science 298, 824–827 (2002)

    Article  Google Scholar 

  20. Hodges, A., Strand, A., Aragaki, A., Kuhn, A., Sengstag, T., Hughes, G., Elliston, L., Hartog, C., Goldstein, D., Thu, D., et al.: Regional and cellular gene expression changes in human Huntington’s disease brain. Human Molecular Genetics 15, 965 (2006)

    Article  Google Scholar 

  21. Kaltenbach, L., Romero, E., et al.: Huntingtin interacting proteins are genetic modifiers of neurodegeneration. PLoS Genet 3, e82 (2007)

    Article  Google Scholar 

  22. Rockabrand, E., Slepko, N., Pantalone, A., Nukala, V., Kazantsev, A., Marsh, J., Sullivan, P., Steffan, J., Sensi, S., Thompson, L.: The first 17 amino acids of Huntingtin modulate its sub-cellular localization, aggregation and effects on calcium homeostasis. Human Molecular Genetics 16, 61 (2007)

    Article  Google Scholar 

  23. Borrell-Pagès, M., Zala, D., Humbert, S., Saudou, F.: Huntington’s disease: from huntingtin function and dysfunction to therapeutic strategies. Cellular and Molecular Life Sciences (CMLS) 63, 2642–2660 (2006)

    Article  Google Scholar 

  24. Giuliano, P., De Cristofaro, T., et al.: DNA damage induced by polyglutamine-expanded proteins. Human Molecular Genetics 12, 2301–2309 (2003)

    Article  Google Scholar 

  25. Hoshino, M., Tagawa, K., et al.: Histone deacetylase activity is retained in primary neurons expressing mutant huntingtin protein. J. Neurochem. 87, 257–267 (2003)

    Article  Google Scholar 

  26. Butler, R., Bates, G.: Histone deacetylase inhibitors as therapeutics for polyglutamine disorders. Nat. Rev. Neurosci. 7, 784–796 (2006)

    Article  Google Scholar 

  27. Ferrante, R., Kubilus, J., Lee, J., Ryu, H., Beesen, A., Zucker, B., Smith, K., Kowall, N., Ratan, R., Luthi-Carter, R., et al.: Histone deacetylase inhibition by sodium butyrate chemotherapy ameliorates the neurodegenerative phenotype in Huntington’s disease mice. Journal of Neuroscience 23, 9418–9427 (2003)

    Google Scholar 

  28. Borovecki, F., Lovrecic, L., Zhou, J., Jeong, H., Then, F., Rosas, H.D., Hersch, S.M., Hogarth, P., Bouzou, B., Jensen, R.V., Krainc, D.: Genome-wide expression profiling of human blood reveals biomarkers for Huntington’s disease. Proc. Natl. Acad. Sci. USA 102, 11023–11028 (2005)

    Article  Google Scholar 

  29. Sotiriou, C., Wirapati, P., Loi, S., Harris, A., Fox, S., Smeds, J., Nordgren, H., Farmer, P., Praz, V., Haibe-Kains, B., et al.: Gene expression profiling in breast cancer: understanding the molecular basis of histologic grade to improve prognosis. J. Natl. Cancer Inst. 98, 262–272 (2006)

    Article  Google Scholar 

  30. Affar, E., Gay, F., Shi, Y., Liu, H., Huarte, M., Wu, S., Collins, T., Li, E., Shi, Y.: Essential Dosage-Dependent Functions of the Transcription Factor Yin Yang 1 in Late Embryonic Development and Cell Cycle Progression. Molecular and Cellular Biology 26, 3565–3581 (2006)

    Article  Google Scholar 

  31. Begon, D., Delacroix, L., Vernimmen, D., Jackers, P., Winkler, R.: Yin Yang 1 Cooperates with Activator Protein 2 to Stimulate ERBB2 Gene Expression in Mammary Cancer Cells. Journal of Biological Chemistry 280, 24428–24434 (2005)

    Article  Google Scholar 

  32. Li, L., Shaw, P.: Autocrine-mediated activation of STAT3 correlates with cell proliferation in breast carcinoma lines. Journal of Biological Chemistry 277, 17397–17405 (2002)

    Article  Google Scholar 

  33. Futreal, P., Coin, L., Marshall, M., Down, T., Hubbard, T., Wooster, R., Rahman, N., Stratton, M.: A census of human cancer genes. Nature Reviews Cancer 4, 177–183 (2004)

    Article  Google Scholar 

  34. Efron, B., Tibshirani, R.: An introduction to the bootstrap. Chapman & Hall, New York (1993)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Martin Vingron Limsoon Wong

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ulitsky, I., Karp, R.M., Shamir, R. (2008). Detecting Disease-Specific Dysregulated Pathways Via Analysis of Clinical Expression Profiles. In: Vingron, M., Wong, L. (eds) Research in Computational Molecular Biology. RECOMB 2008. Lecture Notes in Computer Science(), vol 4955. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78839-3_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-78839-3_30

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-78838-6

  • Online ISBN: 978-3-540-78839-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics