DLIGHT – Lateral Gene Transfer Detection Using Pairwise Evolutionary Distances in a Statistical Framework

  • Christophe Dessimoz
  • Daniel Margadant
  • Gaston H. Gonnet
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4955)


This paper presents an algorithm to detect lateral gene transfer (LGT) on the basis of pairwise evolutionary distances. The prediction is made from a likelihood ratio derived from hypotheses of LGT versus no LGT, using multivariate normal theory. In contrast to approaches based on explicit phylogenetic LGT detection, it avoids the high computational cost and pitfalls associated with gene tree inference, while maintaining the high level of characterization obtainable from such methods (species involved in LGT, direction, distance to the LGT event in the past). We validate the algorithm empirically using both simulation and real data, and compare its predictions with standard methods and other studies.


Horizontal Gene Transfer Lateral Gene Trans Phylogenetic Method Sulfolobus Solfataricus Lateral Gene Trans Event 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Philippe, H., Douady, C.J.: Horizontal gene transfer and phylogenetics. Curr. Opin. Microbiol. 6, 498–505 (2003)CrossRefGoogle Scholar
  2. 2.
    Lawrence, J.G., Ochman, H.: Reconciling the many faces of lateral gene transfer. Trends Microbiol. 10, 1–4 (2002)CrossRefGoogle Scholar
  3. 3.
    Lawrence, J.G., Ochman, H.: Amelioration of bacterial genomes: rates of change and exchange. J. Mol. Evol. 44, 383–397 (1997)CrossRefGoogle Scholar
  4. 4.
    Lawrence, J.G., Ochman, H.: Molecular archaeology of the Escherichia coli genome. Proc. Natl. Acad. Sci. U S A 95, 9413–9417 (1998)CrossRefGoogle Scholar
  5. 5.
    Karlin, S.: Global dinucleotide signatures and analysis of genomic heterogeneity. Curr. Opin. Microbiol. 1, 598–610 (1998)CrossRefGoogle Scholar
  6. 6.
    Moszer, I., Rocha, E.P., Danchin, A.: Codon usage and lateral gene transfer in Bacillus subtilis. Curr. Opin. Microbiol. 2, 524–528 (1999)CrossRefGoogle Scholar
  7. 7.
    Mrazek, J., Karlin, S.: Detecting alien genes in bacterial genomes. Ann. N. Y. Acad. Sci. 870, 314–329 (1999)CrossRefGoogle Scholar
  8. 8.
    Medigue, C., Rouxel, T., Vigier, P., Henaut, A., Danchin, A.: Evidence for horizontal gene transfer in Escherichia coli speciation. J. Mol. Biol. 222, 851–856 (1991) (Comparative Study)CrossRefGoogle Scholar
  9. 9.
    Hamady, M., Betterton, M.D., Knight, R.: Using the nucleotide substitution rate matrix to detect horizontal gene transfer. BMC Bioinformatics 7, 476 (2006)CrossRefGoogle Scholar
  10. 10.
    Beiko, R.G., Harlow, T.J., Ragan, M.A.: Highways of gene sharing in prokaryotes. Proc. Natl. Acad. Sci. U S A 102, 14332–14337 (2005) (Comparative Study)CrossRefGoogle Scholar
  11. 11.
    Gophna, U., Ron, E.Z., Graur, D.: Bacterial type III secretion systems are ancient and evolved by multiple horizontal-transfer events. Gene 312, 151–163 (2003)CrossRefGoogle Scholar
  12. 12.
    Lawrence, J.G., Hartl, D.L.: Inference of horizontal genetic transfer from molecular data: an approach using the bootstrap. Genetics 131, 753–760 (1992)Google Scholar
  13. 13.
    Clarke, G.D.P., Beiko, R.G., Ragan, M.A., Charlebois, R.L.: Inferring genome trees by using a filter to eliminate phylogenetically discordant sequences and a distance matrix based on mean normalized BLASTP scores. J. Bacteriol. 184, 2072–2080 (2002)CrossRefGoogle Scholar
  14. 14.
    Koski, L.B., Golding, G.B.: The closest BLAST hit is often not the nearest neighbor. J. Mol. Evol. 52, 540–542 (2001)Google Scholar
  15. 15.
    Pupko, T., Huchon, D., Cao, Y., Okada, N., Hasegawa, M.: Combining multiple data sets in a likelihood analysis: which models are the best?. Mol. Biol. Evol. 19, 2294–2307 (2002)Google Scholar
  16. 16.
    Susko, E.: Confidence regions and hypothesis tests for topologies using generalized least squares. Mol. Biol. Evol. 20, 862–868 (2003)CrossRefGoogle Scholar
  17. 17.
    Felsenstein, J.: Inferring Phylogenies. Sinauer Associates Inc., Sunderland (2004)Google Scholar
  18. 18.
    Schneider, A., Cannarozzi, G.M., Gonnet, G.H.: Empirical codon substitution matrix. BMC Bioinformatics 6 (2005)Google Scholar
  19. 19.
    Kunin, V., Ouzounis, C.A.: The balance of driving forces during genome evolution in prokaryotes. Genome Res. 13, 1589–1594 (2003)CrossRefGoogle Scholar
  20. 20.
    Dessimoz, C., Cannarozzi, G., Gil, M., Margadant, D., Roth, A., Schneider, A., Gonnet, G.: OMA, a comprehensive, automated project for the identification of orthologs from complete genome data: Introduction and first achievements. In: McLysaght, A., Huson, D.H. (eds.) RECOMB 2005. LNCS (LNBI), vol. 3678, pp. 61–72. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  21. 21.
    Lawrence, J.G., Hendrickson, H.: Lateral gene transfer: when will adolescence end? Mol. Microbiol. 50, 739–749 (2003)CrossRefGoogle Scholar
  22. 22.
    Boeckmann, B., Bairoch, A., Apweiler, R., Blatter, M.C., Estreicher, A., Gasteiger, E., Martin, M.J., Michoud, K., O’Donovan, C., Phan, I., Pilbout, S., Schneider, M.: The swiss-prot protein knowledgebase and its supplement trembl in 2003. Nucleic Acids Res. 31, 365–370 (2003)CrossRefGoogle Scholar
  23. 23.
    Lerat, E., Daubin, V., Ochman, H., Moran, N.A.: Evolutionary origins of genomic repertoires in bacteria. PLoS Biol. 3, e130 (2005)CrossRefGoogle Scholar
  24. 24.
    Ge, F., Wang, L.S., Kim, J.: The cobweb of life revealed by genome-scale estimates of horizontal gene transfer. PLoS Biol. 3, e316 (2005)CrossRefGoogle Scholar
  25. 25.
    Dagan, T., Martin, W.: Ancestral genome sizes specify the minimum rate of lateral gene transfer during prokaryote evolution. Proc. Natl. Acad. Sci. USA 104, 870–875 (2007)CrossRefGoogle Scholar
  26. 26.
    Ragan, M.A.: On surrogate methods for detecting lateral gene transfer. FEMS Microbiol. Lett. 201, 187–191 (2001)CrossRefGoogle Scholar
  27. 27.
    Zhaxybayeva, O., Gogarten, J.P., Charlebois, R.L., Doolittle, W.F., Papke, R.T.: Phylogenetic analyses of cyanobacterial genomes: quantification of horizontal gene transfer events. Genome Res. 16, 1099–1108 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Christophe Dessimoz
    • 1
  • Daniel Margadant
    • 1
  • Gaston H. Gonnet
    • 1
  1. 1.ETH Zurich, Institute of Computational Science, CH-8092 Zurich and, Swiss Institute of Bioinformatics 

Personalised recommendations