Locating Multiple Gene Duplications through Reconciled Trees

  • J. Gordon Burleigh
  • Mukul S. Bansal
  • Andre Wehe
  • Oliver Eulenstein
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4955)


We introduce the first exact and efficient algorithm for Guigó et al.’s problem that given a collection of rooted, binary gene trees and a rooted, binary species tree, determines a minimum number of locations for gene duplication events from the gene trees on the species tree. We examined the performance of our algorithm using a set of 85 genes trees that contain genes from a total of 136 plant taxa. There was evidence of large-scale gene duplication events in Populus, Gossypium, Poaceae, Asteraceae, Brassicaceae, Solanaceae, Fabaceae, and near the root of the eudicot clade. However, error in gene trees can produce erroneous evidence of large-scale duplication events, especially near the root of the species tree. Our algorithm can provide hypotheses for precise locations of large-scale gene duplication events with data from relatively few gene trees and can complement other genomic approaches to provide a more comprehensive view of ancient large-scale gene duplication events.


Species Tree Gene Duplication Gene Tree Duplication Event Gene Duplication Event 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    APG II: An update of the angiosperm phylogeny group classification for the orders and families of flowering plants: APG II. Bot. J. Linn. Soc. 141, 399–436 (2000)Google Scholar
  2. 2.
    Bender, M.A., Farach-Colton, M.: The LCA problem revisited. LATIN, pp. 88–94 (2000)Google Scholar
  3. 3.
    Blanc, G., Hokamp, K., Wolfe, K.H.: A recent polyploidy superimposed on older large-scale duplications in the Arabidopsis genome. Genome Res. 13, 137–144 (2003)CrossRefGoogle Scholar
  4. 4.
    Blanc, G., Wolfe, K.H.: Widespread paleopolyploidy in model plant species inferred from age distributions of duplicate genes. Plant Cell 16, 1093–1101 (2004)Google Scholar
  5. 5.
    Bowers, J.E., Chapman, B.A., Rong, J., Paterson, A.H.: Unravelling angiosperm genome eolution by phylogenetic analysis of chromosomal duplication events. Nature 422, 433–438 (2003)CrossRefGoogle Scholar
  6. 6.
    Cannon, S.B., et al.: Legume genome evolution viewed through the Medicago truncatula and Lotus japonicus genomes. Proc. Natl. Acad. Sci. 103, 14959–14964 (2006)CrossRefGoogle Scholar
  7. 7.
    Chapman, B.A., Bowers, J.E., Schulze, S.R., Paterson, A.H.: A comparative phylogenetic approach for dating whole genome duplication events. Bioinformatics 20, 180–185 (2004)CrossRefGoogle Scholar
  8. 8.
    Cui, L., et al.: Widespread genome duplications throughout the history of flowering plants. Genome Res. 16, 738–749 (2006)CrossRefGoogle Scholar
  9. 9.
    Fellows, M., Hallet, M., Stege, U.: On the multiple gene duplication problem. ISAAC, pp. 347–356 (1998)Google Scholar
  10. 10.
    F.-I.P.C.: for Grapevine Genome Characterization: The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449, 463–467 (2007)Google Scholar
  11. 11.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A guide to the theory of NP-completeness. W. H. Freeman, New York (1979)zbMATHGoogle Scholar
  12. 12.
    Golumbic, M.R.: Algorithmic Graph Theory and Perfect Graphs, Annals of Discrete Mathematics, 2nd edn., vol. 57. Academic Press, London (2004)Google Scholar
  13. 13.
    Goodman, M., Czelusniak, J., Moore, G.W., Romero-Herrera, A.E., Matsuda, G.: Fitting the gene lineage into its species lineage, a parsimony strategy illustrated by cladograms constructed from globin sequences. Systematic Zoology 28, 132–163 (1979)CrossRefGoogle Scholar
  14. 14.
    Grant, V.: Plant speciation, 2nd edn. Columbia University Press (1981)Google Scholar
  15. 15.
    Guigó, R., Muchnik, I., Smith, T.F.: Reconstruction of ancient molecular phylogeny. Molecular Phylogenetics and Evolution 6(2), 189–213 (1996)CrossRefGoogle Scholar
  16. 16.
    Guyot, Keller: Ancestral genome duplication in rice. Genome 47, 610–614 (2004)CrossRefGoogle Scholar
  17. 17.
    Hahn, M.: Bias in phylogenetic tree reconciliation methods: implications for vertebrate genome evolution. Genome Biol. 8, R141 (2007)CrossRefGoogle Scholar
  18. 18.
    Hartmann, S., Lu, D., Phillips, J., Vision, T.J.: Phytome: A platform for plant comparative genomics. Nucleic Acids Research 34, D724–D730 (2006)CrossRefGoogle Scholar
  19. 19.
    Jones, D.T., Taylor, W.R., Thornton, J.M.: The rapid generation of mutation data matrices from protein sequences. Comp. Appl. Biosci. 8, 25–282 (1992)Google Scholar
  20. 20.
    Lynch, M., Conery, J.S.: The evolutionary fate and consequence of duplicate genes. Science 290, 1151–1155 (2000)CrossRefGoogle Scholar
  21. 21.
    Monma, C.L., Wei, V.K.: Intersection graphs of paths in a tree. Journal of Combinatorial Theory 41, 141–181 (1985)CrossRefMathSciNetGoogle Scholar
  22. 22.
    Page, R.D.M., Cotton, J.A.: Vertebrate phylogenomics: reconciled trees and gene duplications. In: Pacific Symposium on Biocomputing, pp. 536–547 (2002)Google Scholar
  23. 23.
    Page, R.D.M., Holmes, E.C.: Molecular evolution: a phylogenetic approach. Blackwell Science, Malden (1998)Google Scholar
  24. 24.
    Paterson, A.H., Bowers, J.E., Chapman, B.A.: Ancient polyploidization predating divergence of the cereals, and its consequences for comparative genomics. Proc. Natl. Acad. Sci. 101, 9903–9908 (2004)CrossRefGoogle Scholar
  25. 25.
    Rensing, S.A., Ick, J., Fawcett, J.A., Lang, D., Zimmer, A., Van de Peer, Y., Reski, R.: An ancient genome duplication contributed to the abundance of metabolic genes in the moss Physcomitrella patens. BMC Evol. Biol. 7, 130 (2007)CrossRefGoogle Scholar
  26. 26.
    Simillion, C., Vandepoele, K., Van Montagu, M.C.E., Zabeau, M., Van de Peer, Y.: The hidden duplication past of Arabidopsis thaliana. Proc. Natl. Acad. Sci. 99, 13627–13632 (2002)CrossRefGoogle Scholar
  27. 27.
    Stebbins, G.: Variation and evolution in plants. Columbia Univ. Press (1950)Google Scholar
  28. 28.
    Sterck, L., Rombauts, S., Jansson, S., Sterky, F., Rouzé, P., Van de Peer, Y.: EST data suggest that poplar is an ancient polyploidy. New Phytologist 167, 165–170 (2005)CrossRefGoogle Scholar
  29. 29.
    Vandepoele, K., Simillion, C., van de Peer, Y.: Evidence that rice and other cereals are ancient aneuploids. Plant Cell 15, 2192–2202 (2003)CrossRefGoogle Scholar
  30. 30.
    Vision, T.J., Brown, D.G., Tanksley, S.: The origins of genome duplications in Arabidopsis. Science 290, 2114–2117 (2000)CrossRefGoogle Scholar
  31. 31.
    Zhang, L.: On a Mirkin-Muchnik-Smith conjecture for comparing molecular phylogenies. Journal of Computational Biology 4(2), 177–187 (1997)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • J. Gordon Burleigh
    • 1
  • Mukul S. Bansal
    • 2
  • Andre Wehe
    • 2
  • Oliver Eulenstein
    • 2
  1. 1.National Evolutionary Synthesis CenterDurhamUSA
  2. 2.Department of Computer ScienceIowa State UniversityAmesUSA

Personalised recommendations