High-Resolution Modeling of Cellular Signaling Networks

  • Michael Baym
  • Chris Bakal
  • Norbert Perrimon
  • Bonnie Berger
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4955)


A central challenge in systems biology is the reconstruction of biological networks from high-throughput data sets. A particularly difficult case of this is the inference of dynamic cellular signaling networks. Within signaling networks, a common motif is that of many activators and inhibitors acting upon a small set of substrates. Here we present a novel technique for high-resolution inference of signaling networks from perturbation data based on parameterized modeling of biochemical rates. We also introduce a powerful new signal-processing method for reduction of batch effects in microarray data. We demonstrate the efficacy of these techniques on data from experiments we performed on the Drosophila Rho-signaling network, correctly identifying many known features of the network. In comparison to existing techniques, we are able to provide significantly improved prediction of signaling networks on simulated data, and higher robustness to the noise inherent in all high-throughput experiments. While previous methods have been effective at inferring biological networks in broad statistical strokes, this work takes the further step of modeling both specific interactions and correlations in the background to increase the resolution. The generality of our techniques should allow them to be applied to a wide variety of networks.


Microarray Data Signaling Network Guanine Nucleotide Exchange Factor Probabilistic Graphical Model Perturbation Data 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Friedman, A., Perrimon, N.: Genetic screening for signal transduction in the era of network biology. Cell 128, 225–231 (2007)CrossRefGoogle Scholar
  2. 2.
    Hughes, T.R., Marton, M.J., Jones, A.R., Roberts, C.J., Stoughton, R., Armour, C.D., Bennett, H.A., Coffey, E., Dai, H., He, Y.D., Kidd, M.J., King, A.M., Meyer, M.R., Slade, D., Lum, P.Y., Stepaniants, S.B., Shoemaker, D.D., Gachotte, D., Chakraburtty, K., Simon, J., Bard, M., Friend, S.H.: Functional discovery via a compendium of expression profiles. Cell 102, 109–126 (2000)CrossRefGoogle Scholar
  3. 3.
    Sahai, E., Marshall, C.J.: Rho-gtpases and cancer. Nat. Rev. Cancer 2(2), 133–142 (2002)CrossRefGoogle Scholar
  4. 4.
    Albert, R.: Scale-free networks in cell biology. J. Cell Sci. 118(21), 4947–4957 (2005)CrossRefGoogle Scholar
  5. 5.
    Csete, M., Doyle, J.: Bow ties, metabolism and disease. Trends in Biotechnology 22(9), 446–450 (2004)CrossRefGoogle Scholar
  6. 6.
    Michiels, F., Habets, G.G.M., Stam, J.C., van der Kammen, R.A., Collard, J.G.: A role for rac in tiaml-induced membrane ruffling and invasion. Nature 375, 338–340 (1995)CrossRefGoogle Scholar
  7. 7.
    Fields, S., Song, O.-K.: A novel genetic system to detect protein-protein interactions. Nature 340, 245–246 (1989)CrossRefGoogle Scholar
  8. 8.
    Giot, L., Bader, J.S., Brouwer, C., Chaudhuri, A., Kuang, B., Li, Y., Hao, Y.L., Ooi, C.E., Godwin, B., Vitols, E., Vijayadamodar, G., Pochart, P., Machineni, H., Welsh, M., Kong, Y., Zerhusen, B., Malcolm, R., Varrone, Z., Collis, A., Minto, M., Burgess, S., McDaniel, L., Stimpson, E., Spriggs, F., Williams, J., Neurath, K., Ioime, N., Agee, M., Voss, E., Furtak, K., Renzulli, R., Aanensen, N., Carrolla, S., Bickelhaupt, E., Lazovatsky, Y., DaSilva, A., Zhong, J., Stanyon, C.A., Finley, R.L.: A protein interaction map of drosophila melanogaster. Science 302(5651), 1727–1736 (2003)CrossRefGoogle Scholar
  9. 9.
    Friedman, N.: Inferring cellular networks using probabilistic graphical models. Science 303(5659), 799–805 (2004)CrossRefGoogle Scholar
  10. 10.
    Sachs, K., Perez, O., Pe’er, D., Lauffenburger, D.A., Nolan, G.P.: Causal protein-signaling networks derived from multiparameter single-cell data. Science 308(5721), 523–529 (2005)CrossRefGoogle Scholar
  11. 11.
    Friedman, N., Linial, M., Nachman, I., Pe’er, D.: Using Bayesian networks to analyze expression data. J. of Computational Biology 7(3-4), 601–620 (2000)CrossRefGoogle Scholar
  12. 12.
    Peõer, D., Regev, A., Elidan, G., Friedman, N.: Inferring subnetworks from perturbed expression profiles. Bioinformatics 17, S214–S224 (2001)CrossRefGoogle Scholar
  13. 13.
    Li, C., Suzuki, S., Ge, Q.-W., Nakata, M., Matsuno, H., Miyano, S.: Structural modeling and analysis of signaling pathways based on petri nets. J. Bioinformatics and Computational Biology 4(5), 1119–1140 (2006)CrossRefGoogle Scholar
  14. 14.
    Nachman, I., Regev, A., Friedman, N.: Inferring quantitative models of regulatory networks from expression data. Bioinformatics 20(suppl. 1), i248–i256 (2004)CrossRefGoogle Scholar
  15. 15.
    Margolin, A.A., Wang, K., Lim, W.K., Kustagi, M., Nemenman, I., Califano, A.: Reverse engineering cellular networks. Nature Protocols 1, 662–671 (2006)CrossRefGoogle Scholar
  16. 16.
    Basso, K., Margolin, A.A., Stolovitzky, G., Klein, U., Dalla-Favera, R., Califano, A.: Reverse engineering of regulatory networks in human B cells. Nature Genetics 37(4), 382–390 (2005)CrossRefGoogle Scholar
  17. 17.
    Subramanian, A., Tamayo, P., Mootha, V.K., Mukherjee, S., Ebert, B.L., Gillette, M.A., Paulovich, A., Pomeroy, S.L., Golub, T.R., Lander, E.S., Mesirov, J.P.: Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA 102(43), 15545–15550 (2005)CrossRefGoogle Scholar
  18. 18.
    Lamb, J., Crawford, E.D., Peck, D., Modell, J.W., Blat, I.C., Wrobel, M.J., Lerner, J., Brunet, J.-P., Subramanian, A., Ross, K.N., Reich, M., Hieronymus, H., Wei, G., Armstrong, S.A., Haggarty, S.J., Clemons, P.A., Wei, R., Carr, S.A., Lander, E.S., Golub, T.R.: The Connectivity Map: Using Gene-Expression Signatures to Connect Small Molecules, Genes, and Disease. Science 313(5795), 1929–1935 (2006)CrossRefGoogle Scholar
  19. 19.
    Baur, J.A., Pearson, K.J., Price, N.L., Jamieson, H.A., Lerin, C., Kalra, A., Prabhu, V.V., Allard, J.S., Lopez-Lluch, G., Lewis, K., Pistell, P.J., Poosala, S., Becker, K.G., Boss, O., Gwinn, D., Wang, M., Ramaswamy, S., Fishbein, K.W., Spencer, R.G., Lakatta, E.G., Couteur, D.L., Shaw, R.J., Navas, P., Puigserver, P., Ingram, D.K., de Cabo, R., Sinclair, D.A.: Resveratrol improves health and survival of mice on a high-calorie diet. Nature 444(7117), 337–342 (2006)CrossRefGoogle Scholar
  20. 20.
    Michaelis, L., Menten, M.: Die kinetik der invertinwirkung. Biochem. Z. 49, 333–369 (1913)Google Scholar
  21. 21.
    Briggs, G.E., Haldane, J.B.S.: A note on the kinetics of enzyme action. Biochem. J. 19, 339–339 (1925)Google Scholar
  22. 22.
    Borup, R., Zhao, P., Nagaraju, K., Bakay, E.P.H.M., Chen, Y.-W.: Sources of variability and effect of experimental approach on expression profiling data interpretation. BMC Bioinformatics 3(4) (2002)Google Scholar
  23. 23.
    Larkin, J.E., Frank, B.C., Gavras, H., Sultana, R., Quackenbush, J.: Independence and reproducibility across microarray platforms. Nature Methods 2(5), 337–344 (2005)CrossRefGoogle Scholar
  24. 24.
    Coleman, T., Li, Y.: An Interior, Trust Region Approach for Nonlinear Minimization Subject to Bounds. SIAM Journal on Optimization 6, 418–445 (1996)CrossRefMathSciNetzbMATHGoogle Scholar
  25. 25.
    The Mathworks: Optimization toolbox 3.1.2 (2007),
  26. 26.
    Cleveland, W.S.: Robust locally weighted regression and smoothing scatterplots. J. Amer. Stat. Assoc. 74, 829–836 (1979)CrossRefMathSciNetzbMATHGoogle Scholar
  27. 27.
    Macqueen, J.B.: Some methods of classification and analysis of multivariate observations. In: Proceedings of the Fifth Berkeley Symposium on Mathemtical Statistics and Probability, pp. 281–297 (1967)Google Scholar
  28. 28.
    Akaike, H.: A new look at the statistical model identification. IEEE Transactions on Automatic Control 19(6), 716–723 (1974)CrossRefMathSciNetzbMATHGoogle Scholar
  29. 29.
    Schwarz, G.: Estimating the dimension of a model. Annals of Statistics 6(2), 461–464 (1978)CrossRefMathSciNetzbMATHGoogle Scholar
  30. 30.
    Sone, M., Hoshino, M., Suzuki, E., Kuroda, S., Kaibuchi, K., Nakagoshi, H., Saigo, K., Nabeshima, Y.-i., Hama, C.: Still life, a protein in synaptic terminals of drosophila homologous to gdp-gtp exchangers. Science 275(5299), 543–547 (1997)CrossRefGoogle Scholar
  31. 31.
    Newsome, T.P., Schmidt, S., Dietzl, G., Keleman, K., Asling, B., Debant, A., Dickson, B.J.: Trio combines with dock to regulate pak activity during photoreceptor axon pathfinding in drosophila. Cell 101(3), 283–294 (2000)CrossRefGoogle Scholar
  32. 32.
    Billuart, P., Winter, C.G., Maresh, A., Zhao, X., Luo, L.: Regulating axon branch stability: the role of p190 rhogap in repressing a retraction signaling pathway (2001)Google Scholar
  33. 33.
    Bashaw, G.J., Hu, H., Nobes, C.D., Goodman, C.S.: A novel dbl family rhogef promotes rho-dependent axon attraction to the central nervous system midline in drosophila and overcomes robo repulsion (2001)Google Scholar
  34. 34.
    Gonzalez, C.: Cell division: The place and time of cytokinesis. Current Biology 13(9), R363–R365 (2003)CrossRefGoogle Scholar
  35. 35.
    Rossman, K.L., Der, C.J., Sondek, J.: Gef means go: turning on rho gtpases with guanine nucleotide-exchange factors. Nat. Rev. Mol. Cell Biol. 6(2), 167–180 (2005)CrossRefGoogle Scholar
  36. 36.
    Hu, H., Li, M., Labrador, J.P., McEwen, J., Lai, E.C., Goodman, C.S., Bashaw, G.J.: Cross gtpase-activating protein (crossgap)/vilse links the roundabout receptor to rac to regulate midline repulsion (2005)Google Scholar
  37. 37.
    Nahm, M., Lee, M., Baek, S.-H., Yoon, J.-H., Kim, H.-H., Lee, Z.H., Lee, S.: Drosophila rhogef4 encodes a novel rhoa-specific guanine exchange factor that is highly expressed in the embryonic central nervous system. Gene 384, 139–144 (2006)CrossRefGoogle Scholar
  38. 38.
    Reid, T., Bathoorn, A., Ahmadian, M.R., Collard, J.G.: Identification and characterization of hpem-2, a guanine nucleotide exchange factor specific for cdc42. J. Biol. Chem. 274(47), 33587–33593 (1999)CrossRefGoogle Scholar
  39. 39.
    Shamah, S.M., Lin, M.Z., Goldberg, J.L., Estrach, S., Sahin, M., Hu, L., Bazalakova, M., Neve, R.L., Corfas, G., Debant, A., Greenberg, M.E.: Epha receptors regulate growth cone dynamics through the novel guanine nucleotide exchange factor ephexin. Cell 105(2), 233–244 (2001)CrossRefGoogle Scholar
  40. 40.
    Hall, C., Michael, G.J., Cann, N., Ferrari, G., Teo, M., Jacobs, T., Monfries, C., Lim, L.: alpha2-chimaerin, a cdc42/rac1 regulator, is selectively expressed in the rat embryonic nervous system and is involved in neuritogenesis in n1e-115 neuroblastoma cells (2001)Google Scholar
  41. 41.
    Niu, J., Profirovic, J., Pan, H., Vaiskunaite, R., Voyno-Yasenetskaya, T.: G protein βγ subunits stimulate p114rhogef, a guanine nucleotide exchange factor for rhoa and rac1: Regulation of cell shape and reactive oxygen species production. Circ. Res. 93(9), 848–856 (2003)CrossRefGoogle Scholar
  42. 42.
    Nagata, K.-I., Inagaki, M.: Cytoskeletal modification of rho guanine nucleotide exchange factor activity: identification of a rho guanine nucleotide exchange factor as a binding partner for sept9b, a mammalian septin. Oncogene 24(1), 65–76 (2004)CrossRefGoogle Scholar
  43. 43.
    Wells, C.D., Fawcett, J.P., Traweger, A., Yamanaka, Y., Goudreault, M., Elder, K., Kulkarni, S., Gish, G., Virag, C., Lim, C., Colwill, K., Starostine, A., Metalnikov, P., Pawson, T.: A rich1/amot complex regulates the cdc42 gtpase and apical-polarity proteins in epithelial cells. cell 125(3), 535–548 (2006)CrossRefGoogle Scholar
  44. 44.
    Cho, Y.J., Cunnick, J.M., Yi, S.J., Kaartinen, V., Groffen, J., Heisterkamp, N.: Abr and bcr, two homologous rac gtpase-activating proteins, control multiple cellular functions of murine macrophages (2007)Google Scholar
  45. 45.
    Dalva, M.B.: There’s more than one way to skin a chimaerin (2007)Google Scholar
  46. 46.
    Mitin, N., Betts, L., Yohe, M.E., Der, C.J., Sondek, J., Rossman, K.L.: Release of autoinhibition of asef by apc leads to cdc42 activation and tumor suppression. Nat. Struct. Mol. Biol. 14(9), 814–823 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Michael Baym
    • 1
    • 2
  • Chris Bakal
    • 3
    • 4
  • Norbert Perrimon
    • 3
    • 4
  • Bonnie Berger
    • 1
    • 2
  1. 1.Department of MathematicsMITCambridge 
  2. 2.Computer Science and Artificial Intelligence LaboratoryMIT 
  3. 3.Department of GeneticsHarvard Medical SchoolBoston 
  4. 4.Howard Hughes Medical InstituteBoston 

Personalised recommendations