Spectrum Fusion: Using Multiple Mass Spectra for De Novo Peptide Sequencing

  • Ritendra Datta
  • Marshall Bern
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4955)


We report on a new algorithm for combining the information from several mass spectra of the same peptide. The algorithm automatically learns peptide fragmentation patterns, so that it can handle spectra from any instrument and fragmentation technique. We demonstrate the utility of the algorithm, and the power of multiple spectra, by showing that combining pairs of spectra (one CID and one ETD) greatly improves de novo sequencing success rates.


Tandem Mass Spectrum Parent Mass Synthetic Spectrum Spectral Network Residue Masse 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bandeira, N., Tsur, D., Frank, A., Pevzner, P.A.: Protein identification by spectral networks analysis. Proc. Natl. Acad. Sci. USA 104, 6140–6145 (2007)CrossRefGoogle Scholar
  2. 2.
    Bandeira, N., Clauser, K.R., Pevzner, P.A.: Assembly of peptide tandem mass spectra from mixtures of modified proteins. Molecular Cell. Proteomics 6, 1123–1134 (2007)CrossRefGoogle Scholar
  3. 3.
    Bartels, C.: Fast algorithm for peptide sequencing by mass spectrometry. Biomedical and Environmental Mass Spectrometry 19, 363–368 (1990)CrossRefGoogle Scholar
  4. 4.
    Bern, M., Cai, Y., Goldberg, D.: Lookup peaks: a hybrid of de novo sequencing and database search for protein identification by tandem mass spectrometry. Anal. Chem. 79, 1393–1400 (2007)CrossRefGoogle Scholar
  5. 5.
    Bern, M., Goldberg, D.: De novo analysis of peptide tandem mass spectra by spectral graph partitioning. J. Computational Biology 13, 364–378 (2006)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Chen, T., Kao, M.-Y., Tepel, M., Rush, J., Church, G.M.: A dynamic programming approach to de novo peptide sequencing by mass spectrometry. J. Computational Biology 8, 325–337 (2001)CrossRefGoogle Scholar
  7. 7.
    Chow, C.K., Liu, C.N.: Approximating discrete probability distributions with dependence trees. IEEE Trans. on Information Theory 14, 462–467 (1968)CrossRefzbMATHGoogle Scholar
  8. 8.
    Dančik, V., Addona, T.A., Clauser, K.R., Vath, J.E., Pevzner, P.A.: De novo peptide sequencing via tandem mass spectrometry. J. Computational Biology 6, 327–342 (1999)CrossRefGoogle Scholar
  9. 9.
    Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification. Wiley-Interscience, Chichester (2000)Google Scholar
  10. 10.
    Elias, J.E., Gibbons, F.D., King, O.D., Roth, F.P., Gygi, S.P.: Intensity-based protein identification by machine learning from a library of tandem mass spectra. Nature Biotechnology 22, 214–219 (2004)CrossRefGoogle Scholar
  11. 11.
    Eng, J.K., McCormack, A.L., Yates III., J.R.: An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J. Am. Soc. Mass Spectrom. 5, 976–989 (1994)CrossRefGoogle Scholar
  12. 12.
    Eppstein, D.: Finding the k shortest paths. SIAM J. Computing 28, 652–673 (1998)CrossRefMathSciNetzbMATHGoogle Scholar
  13. 13.
    Frank, A., Pevzner, P.: PepNovo: De Novo Peptide Sequencing via Probabilistic Network Modeling. Anal. Chem. 77, 964–973 (2005)CrossRefGoogle Scholar
  14. 14.
    Friedman, N., Geiger, D., Goldszmidt, M.: Bayesian Network Classifiers. Machine Learning 29, 131–163 (1997)CrossRefzbMATHGoogle Scholar
  15. 15.
    Graehl, J.: Implementation of David Eppstein’s k Shortest Paths Algorithm.,
  16. 16.
    Havilio, M., Haddad, Y., Smilansky, Z.: Intensity-based statistical scorer for tandem mass spectrometry. Anal. Chem. 75, 435–444 (2003)CrossRefGoogle Scholar
  17. 17.
    Ma, B., Zhang, K., Hendrie, C., Liang, C., Li, M., Doherty-Kirby, A., Lajoie, G.: PEAKS: powerful software for peptide de novo sequencing by tandem mass spectrometry. Rapid Comm. in Mass Spectrometry 17, 2337–2342 (2003), CrossRefGoogle Scholar
  18. 18.
    Savitski, M.M., Nielsen, M.L., Kjeldsen, F., Zubarev, R.A.: Proteomics-Grade de Novo Sequencing Approach. J. Proteome Research, 2348–2354 (2005)Google Scholar
  19. 19.
    Shevchenko, A., et al.: Charting the proteomes of organisms with unsequenced genomes by MALDI-quadrupole time-of-flight mass spectrometry and BLAST homology searching. Anal. Chem. 73, 1917–1926 (2001)CrossRefGoogle Scholar
  20. 20.
    Syka, J.E., Coon, J.J., Schroeder, M.J., Shabanowitz, J., Hunt, D.F.: Peptide and protein sequence analysis by electron transfer dissociation mass spectrometry. Proc. Natl. Acad. Sci. USA 101, 9528–9533 (2004)CrossRefGoogle Scholar
  21. 21.
    Tabb, D.L., Smith, L.L., Breci, L.A., Wysocki, V.H., Lin, D., Yates III., J.R.: Statistical characterization of ion trap tandem mass spectra from doubly charged tryptic digests. Anal. Chem. 75, 1155–1163 (2003)CrossRefGoogle Scholar
  22. 22.
    Taylor, J.A., Johnson, R.S.: Implementation and uses of automated de novo peptide sequencing by tandem mass spectrometry. Anal. Chem. 73, 2594–2604 (2001)CrossRefGoogle Scholar
  23. 23.
    Venable, J.D., Xu, T., Cociorva, D., Yates III., J.R.: Cross-correlation algorithm for calculation of peptide molecular weight from tandem mass spectra. Anal. Chem. 78, 1921–1929 (2006)CrossRefGoogle Scholar
  24. 24.
    Zhang, Z., McElvain, J.S.: De novo peptide sequencing by two-dimensional fragment correlation mass spectrometry. Anal. Chem. 72, 2337–2350 (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Ritendra Datta
    • 1
  • Marshall Bern
    • 2
  1. 1.Penn State UniversityUniversity ParkUSA
  2. 2.Palo Alto Research CenterPalo AltoUSA

Personalised recommendations