Control Theory for Automation: Fundamentals

Part of the Springer Handbooks book series (SHB)


In this chapter autonomous dynamical systems, stability, asymptotic behavior, dynamical systems with inputs, feedback stabilization of linear systems, feedback stabilization of nonlinear systems, and tracking and regulation are discussed to provide the foundation for control theory for automation.



input-to-state stability


  1. 9.1.
    G.D. Birkhoff: Dynamical Systems (Am. Math. Soc., Providence 1927)zbMATHGoogle Scholar
  2. 9.2.
    J.K. Hale, L.T. Magalhães, W.M. Oliva: Dynamics in Infinite Dimensions (Springer, New York 2002)zbMATHGoogle Scholar
  3. 9.3.
    A. Isidori, C.I. Byrnes: Steady-state behaviors in nonlinear systems with an application to robust disturbance rejection, Annu. Rev. Control 32, 1–16 (2008)CrossRefGoogle Scholar
  4. 9.4.
    E.D. Sontag: On the input-to-state stability property, Eur. J. Control 1, 24–36 (1995)zbMATHGoogle Scholar
  5. 9.5.
    E.D. Sontag, Y. Wang: On characterizations of the input-to-state stability property, Syst. Control Lett. 24, 351–359 (1995)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 9.6.
    A. Isidori: Nonlinear Control Systems II (Springer, London 1999)zbMATHGoogle Scholar
  7. 9.7.
    A.R. Teel: A nonlinear small gain theorem for the analysis of control systems with saturations, IEEE Trans. Autom. Control AC-41, 1256–1270 (1996)CrossRefMathSciNetGoogle Scholar
  8. 9.8.
    Z.P. Jiang, A.R. Teel, L. Praly: Small-gain theorem for ISS systems and applications, Math. Control Signal Syst. 7, 95–120 (1994)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.9.
    W. Hahn: Stability of Motions (Springer, Berlin, Heidelberg 1967)Google Scholar
  10. 9.10.
    A. Isidori: Nonlinear Control Systems, 3rd edn. (Springer, London 1995)zbMATHGoogle Scholar
  11. 9.11.
    H.K. Khalil, F. Esfandiari: Semiglobal stabilization of a class of nonlinear systems using output feedback, IEEE Trans. Autom. Control AC-38, 1412–1415 (1993)CrossRefMathSciNetGoogle Scholar
  12. 9.12.
    A.R. Teel, L. Praly: Tools for semiglobal stabilization by partial state and output feedback, SIAM J. Control Optim. 33, 1443–1485 (1995)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 9.13.
    J.P. Gauthier, I. Kupka: Deterministic Observation Theory and Applications (Cambridge Univ. Press, Cambridge 2001)CrossRefzbMATHGoogle Scholar
  14. 9.14.
    B.A. Francis, W.M. Wonham: The internal model principle of control theory, Automatica 12, 457–465 (1976)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 9.15.
    A. Serrani, A. Isidori, L. Marconi: Semiglobal nonlinear output regulation with adaptive internal model, IEEE Trans. Autom. Control AC-46, 1178–1194 (2001)CrossRefMathSciNetGoogle Scholar
  16. 9.16.
    L. Marconi, L. Praly, A. Isidori: Output stabilization via nonlinear luenberger observers, SIAM J. Control Optim. 45, 2277–2298 (2006)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Department of Informatics and SytematicsUniversity of Rome ``La SapienzaʼʼRomeItaly

Personalised recommendations