Impacts of Automation on Precision

Part of the Springer Handbooks book series (SHB)


Automation has significant impacts on the economy and the development and use of technology. In this chapter, the impacts of automation on precision, which also directly influences science, technology, and the economy, are discussed. As automation enables improved precision, precision also improves automation.

Following the definition of precision and the factors affecting it, the relationship between precision and automation is described. This chapter concludes with specific examples of how automation has improved the precision of manufacturing processes and manufactured products over the last decades.


Machine Tool Computer Numerical Control Error Compensation Error Motion Manufacturing Equipment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



computer numerical control




Massachusetts Institute of Technology


miles in-trail


numerical control


  1. 7.1.
    ISO/IEC Guide 99: International Vocabulary of Metrology – Basic and General Concepts and Associated Terms (VIM) (International Organization for Standardization, Genewa 2007)Google Scholar
  2. 7.2.
    ISO/IEC Guide 98: Guide to the Expression of Uncertainty in Measurement (GUM) (International Organization for Standardization, Genewa 1995)Google Scholar
  3. 7.3.
    C. Evans: Precision Engineering: An Evolutionary View (Cranfield Univ. Press, Cranfield 1989)Google Scholar
  4. 7.4.
    D.A. Hounshell: From the American System to Mass Production, 1800–1932: the Development of Manufacturing Technology in the United States (Johns Hopkins Univ. Press, Baltimore 1984)Google Scholar
  5. 7.5.
    D. Muir: Reflections in Bulloughʼs Pond; Economy and Ecosystem in New England (Univ. Press of New England, Lebanon 2000)Google Scholar
  6. 7.6.
    J.B. Bryan: The benefits of brute strength, Prec. Eng. 2(4), 173 (1980)CrossRefMathSciNetGoogle Scholar
  7. 7.7.
    J.B. Bryan: Closer tolerances – economic sense, Ann. CIRP 19(2), 115–120 (1971)Google Scholar
  8. 7.8.
    P.A. McKeown: Higher precision manufacturing and the British economy, Proc. Inst. Mech. Eng. 200(B3), 147–165 (1986)Google Scholar
  9. 7.9.
    ISO/DIS 26303-1: Capability Evaluation of Machining Processes on Metal-Cutting Machine Tools (International Organization of Standardization, Genewa 2008)Google Scholar
  10. 7.10.
    ISO 21747: Statistical Methods – Process Performance and Capability Statistics for Measured Quality Characteristics (International Organization for Standardization, Genewa 2006)Google Scholar
  11. 7.11.
    ISO 22514-3: Statistical Methods in Process Management – Capability and Performance – Part 3: Machine Performance Studies for Measured Data on Discrete Parts (International Organization for Standardization, Genewa 2008)Google Scholar
  12. 7.12.
    ISO/TR 22514-4: Statistical Methods in Process Management – Capability and Performance – Part 4: Process Capability Estimates and Performance Measures (International Organization for Standardization, Genewa 2007)Google Scholar
  13. 7.13.
    ASME B89.6.2: Temperature and Humidity Environment for Dimensional Measurement (The American Society of Mechanical Engineers, New York 1973)Google Scholar
  14. 7.14.
    J.B. Bryan: International status of thermal error research, Ann. CIRP 39(2), 645–656 (1990)CrossRefMathSciNetGoogle Scholar
  15. 7.15.
    G.S. Vasilah: The advent of numerical control 1951–1959, Manufact. Eng. 88(1), 143–172 (1982)Google Scholar
  16. 7.16.
    D.B. Dallas: Tool and Manufacturing Engineers Handbook, 3rd edn. (Society of Manufacturing Engineers, McGraw-Hill, New York 1976)Google Scholar
  17. 7.17.
    J.F. Reintjes: Numerical Control: Making a New Technology (Oxford Univ. Press, New York 1991)Google Scholar
  18. 7.18.
    R. Donaldson, S.R. Patterson: Design and construction of a large vertical-axis diamond turning machine, Proc. SPIE 27th Annu. Int. Tech. Symp. Instrum. Disp., Vol. 23 (Lawrence Livermore National Laboratory, 1983), Report UCRL-89738Google Scholar
  19. 7.19.
    N. Taniguchi: The state of the art of nanotechnology for processing of ultraprecision and ultrafine products, Prec. Eng. 16(1), 5–24 (1994)CrossRefGoogle Scholar
  20. 7.20.
    R. Schultschick: The components of volumetric accuracy, Ann. CIRP 25(1), 223–226 (1972)Google Scholar
  21. 7.21.
    R. Hocken, J.A. Simpson, B. Borchardt, J. Lazar, C. Reeve, P. Stein: Three dimensional metrology, Ann. CIRP 26, 403–408 (1977)Google Scholar
  22. 7.22.
    V.T. Portman: Error summation in the analytical calculation of the lathe accuracy, Mach. Tool. 51(1), 7–10 (1980)Google Scholar
  23. 7.23.
    R.P. Paul: Robot Manipulators: Mathematics, Programming, and Control (MIT Press, Cambridge 1981)Google Scholar
  24. 7.24.
    M.A. Donmez, C.R. Liu, M.M. Barash: A generalized mathematical model for machine tool errors, modeling, sensing, and control of manufacturing processes, Proc. ASME Winter Annu. Meet., PED, Vol. 23 (1986)Google Scholar
  25. 7.25.
    R. Venugopal, M.M. Barash: Thermal effects on the accuracy of numerically controlled machine tools, Ann. CIRP 35(1), 255–258 (1986)CrossRefGoogle Scholar
  26. 7.26.
    J.S. Chen, J. Yuan, J. Ni, S.M. Wu: Thermal error modeling for volumetric error compensation, Proc. ASME Winter Annu. Meet., PED, Vol. 55 (1992)Google Scholar
  27. 7.27.
    K.W. Yee, R.J. Gavin: Implementing Fast Probing and Error Compensation on Machine Tools, NISTIR 4447 (The National Institute of Standards and Technology, Gaithersburg 1990)Google Scholar
  28. 7.28.
    M.A. Donmez, K. Lee, R. Liu, M. Barash: A real-time error compensation system for a computerized numerical control turning center, Proc. IEEE Int. Conf. Robot. Autom. (1986)Google Scholar
  29. 7.29.
    M.A. Donmez: Development of a new quality control strategy for automated manufacturing, Proc. Manufact. Int. (ASM, New York 1992)Google Scholar
  30. 7.30.
    L. Deshayes, L. Welsch, A. Donmez, R. Ivester, D. Gilsinn, R. Rhorer, E. Whitenton, F. Potra: Smart machining systems: issues and research trends, Proc. 12th CIRP Life Cycle Eng. Semin. (Grenoble 2005)Google Scholar
  31. 7.31.
    L. Deshayes, L.A. Welsch, R.W. Ivester, M.A. Donmez: Robust optimization for smart machining system: an enabler for agile manufacturing, Proc. ASME IMECE (2005)Google Scholar
  32. 7.32.
    R.W. Ivester, J.C. Heigel: Smart machining systems: robust optimization and adaptive control optimization for turning operations, Trans. North Am. Res. Inst. (NAMRI)/SME, Vol. 35 (2007)Google Scholar
  33. 7.33.
    J. Vigouroux, S. Foufou., L. Deshayes, J.J. Filliben, L.A. Welsch, M.A. Donmez: On tuning the design of an evolutionary algorithm for machining optimization problem, Proc. 4th Int. Conf. Inf. Control (Angers 2007)Google Scholar
  34. 7.34.
    ASME B5.59-1 (Draft): Information Technology for Machine Tools – Part 1: Data Specification for Machine Tool Performance Tests (American Society of Mechanical Engineers, New York 2007)Google Scholar
  35. 7.35.
    ASME B5.59-2 (Draft): Information Technology for Machine Tools – Part 2: Data Specification for Properties of Machine Tools for Milling and Turning (American Society of Mechanical Engineers, New York 2007)Google Scholar
  36. 7.36.
    T. Burns, S.P. Mates, R.L. Rhorer, E.P. Whitenton, D. Basak: Recent results from the NIST pulse-heated Kolsky bar, Proc. 2007 Annu. Conf. Expo. Exp. Appl. Mech. (Springfield 2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Manufacturing Engineering LaboratoryNational Institute of Standards and TechnologyGaithersburgUSA
  2. 2.Manufacturing Engineering LaboratoryNational Institute of Standards and TechnologyGaithersburgUSA

Personalised recommendations