A History of Automatic Control

Part of the Springer Handbooks book series (SHB)


Automatic control , particularly the application of feedback, has been fundamental to the development of automation. Its origins lie in the level control, water clocks, and pneumatics/hydraulics of the ancient world. From the 17th century onwards, systems were designed for temperature control, the mechanical control of mills, and the regulation of steam engines. During the 19th century it became increasingly clear that feedback systems were prone to instability. A stability criterion was derived independently towards the end of the century by Routh in England and Hurwitz in Switzerland. The 19th century, too, saw the development of servomechanisms, first for ship steering and later for stabilization and autopilots. The invention of aircraft added (literally) a new dimension to the problem. Minorskyʼs theoretical analysis of ship control in the 1920s clarified the nature of three-term control, also being used for process applications by the 1930s. Based on servo and communications engineering developments of the 1930s, and driven by the need for high-performance gun control systems, the coherent body of theory known as classical control emerged during and just after WWII in the US, UK and elsewhere, as did cybernetics ideas. Meanwhile, an alternative approach to dynamic modeling had been developed in the USSR based on the approaches of Poincaré and Lyapunov. Information was gradually disseminated, and state-space or modern control techniques, fuelled by Cold War demands for missile control systems, rapidly developed in both East and West. The immediate post-war period was marked by great claims for automation, but also great fears, while the digital computer opened new possibilities for automatic control.


Automatic Control Computer Numerical Control Programmable Logic Controller Classical Control Steam Engine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



artificial intelligence


American Society of Mechanical Engineers


computer numerical control


direct digital control


Institut Avtomatiki i Telemekhaniki


interarrival time


information and communication technology


Kommissiya Telemekhaniki i Avtomatiki




Massachusetts Institute of Technology


miles in-trail


National Defence Research Committee


operations research


personal computer


proportional, integral, and derivative


programmable logic controller


world war 2


  1. 4.1.
    O. Mayr: The Origins of Feedback Control (MIT, Cambridge 1970)zbMATHGoogle Scholar
  2. 4.2.
    F.W. Gibbs: The furnaces and thermometers of Cornelius Drebbel, Ann. Sci. 6, 32–43 (1948)CrossRefGoogle Scholar
  3. 4.3.
    T. Mead: Regulators for wind and other mills, British Patent (Old Series) 1628 (1787)Google Scholar
  4. 4.4.
    H.W. Dickinson, R. Jenkins: James Watt and the Steam Engine (Clarendon Press, Oxford 1927)Google Scholar
  5. 4.5.
    C.C. Bissell: Stodola, Hurwitz and the genesis of the stability criterion, Int. J. Control 50(6), 2313–2332 (1989)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 4.6.
    S. Bennett: A History of Control Engineering 1800–1930 (Peregrinus, Stevenage 1979)Google Scholar
  7. 4.7.
    G.B. Airy: On the regulator of the clock-work for effecting uniform movement of equatorials, Mem. R. Astron. Soc. 11, 249–267 (1840)Google Scholar
  8. 4.8.
    J.C. Maxwell: On governors, Proc. R. Soc. 16, 270–283 (1867)CrossRefGoogle Scholar
  9. 4.9.
    E.J. Routh: A Treatise on the Stability of a Given State of Motion (Macmillan, London, 1877)Google Scholar
  10. 4.10.
    A. Hurwitz: Über die Bedingungen, unter welchen eine Gleichung nur Wurzeln mit negativen reellen Teilen besitzt, Math. Ann. 46, 273–280 (1895), in GermanCrossRefMathSciNetGoogle Scholar
  11. 4.11.
    E. Bompiani: Sulle condizione sotto le quali un equazione a coefficienti reale ammette solo radici con parte reale negative, G. Mat. 49, 33–39 (1911), in ItalianGoogle Scholar
  12. 4.12.
    C.C. Bissell: The classics revisited – Part I, Meas. Control 32, 139–144 (1999)Google Scholar
  13. 4.13.
    C.C. Bissell: The classics revisited – Part II, Meas. Control 32, 169–173 (1999)Google Scholar
  14. 4.14.
    M. Tolle: Die Regelung der Kraftmaschinen, 3rd edn. (Springer, Berlin 1922), in GermanGoogle Scholar
  15. 4.15.
    O. Mayr: Feedback Mechanisms (Smithsonian Institution Press, Washington 1971)Google Scholar
  16. 4.16.
    T.P. Hughes: Elmer Sperry: Inventor and Engineer (Johns Hopkins Univ. Press, Baltimore 1971)Google Scholar
  17. 4.17.
    S. Bennett: A History of Control Engineering 1800–1930 (Peregrinus, Stevenage 1979) p. 137Google Scholar
  18. 4.18.
    S. Bennett: A History of Control Engineering 1930–1955 (Peregrinus, Stevenage 1993)zbMATHGoogle Scholar
  19. 4.19.
    N. Minorsky: Directional stability of automatically steered bodies, Trans. Inst. Nav. Archit. 87, 123–159 (1922)Google Scholar
  20. 4.20.
    O. Heaviside: Electrical Papers (Chelsea, New York 1970), reprint of the 2nd edn.Google Scholar
  21. 4.21.
    S. Bennett: A History of Control Engineering 1800–1930 (Peregrinus, Stevenage 1979), Chap. 6Google Scholar
  22. 4.22.
    C.C. Bissell: Karl Küpfmüller: a German contributor to the early development of linear systems theory, Int. J. Control 44, 977–89 (1986)CrossRefzbMATHGoogle Scholar
  23. 4.23.
    H. Nyquist: Regeneration theory, Bell Syst. Tech. J. 11, 126–47 (1932)zbMATHGoogle Scholar
  24. 4.24.
    H.S. Black: Stabilized feedback amplifiers, Bell Syst. Tech. J. 13, 1–18 (1934)Google Scholar
  25. 4.25.
    H.W. Bode: Relations between amplitude and phase in feedback amplifier design, Bell Syst. Tech. J. 19, 421–54 (1940)Google Scholar
  26. 4.26.
    H.W. Bode: Network Analysis and Feedback Amplifier Design (Van Nostrand, Princeton 1945)Google Scholar
  27. 4.27.
    H.L. Hazen: Theory of servomechanisms, J. Frankl. Inst. 218, 283–331 (1934)Google Scholar
  28. 4.28.
    A. Leonhard: Die Selbsttätige Regelung in der Elektrotechnik (Springer, Berlin 1940), in GermanGoogle Scholar
  29. 4.29.
    C.C. Bissell: The First All-Union Conference on Automatic Control, Moscow, 1940, IEEE Control Syst. Mag. 22, 15–21 (2002)CrossRefGoogle Scholar
  30. 4.30.
    C.C. Bissell: A.A. Andronov and the development of Soviet control engineering, IEEE Control Syst. Mag. 18, 56–62 (1998)CrossRefGoogle Scholar
  31. 4.31.
    D. Mindell: Between Human and Machine (Johns Hopkins Univ. Press, Baltimore 2002)Google Scholar
  32. 4.32.
    C.C. Bissell: Textbooks and subtexts, IEEE Control Syst. Mag. 16, 71–78 (1996)CrossRefGoogle Scholar
  33. 4.33.
    H. Schmidt: Regelungstechnik – die technische Aufgabe und ihre wissenschaftliche, sozialpolitische und kulturpolitische Auswirkung, Z. VDI 4, 81–88 (1941), in GermanGoogle Scholar
  34. 4.34.
    C.C. Bissell: Control Engineering in the former USSR: some ideological aspects of the early years, IEEE Control Syst. Mag. 19, 111–117 (1999)CrossRefGoogle Scholar
  35. 4.35.
    A.D. Dalmedico: Early developments of nonlinear science in Soviet Russia: the Andronov school at Gorky, Sci. Context 1/2, 235–265 (2004)CrossRefGoogle Scholar
  36. 4.36.
    A.C. Hall: Application of circuit theory to the design of servomechanisms, J. Frankl. Inst. 242, 279–307 (1946)CrossRefGoogle Scholar
  37. 4.37.
    A.C. Hall: The Analysis and Synthesis of Linear Servomechanisms (Restricted Circulation) (The Technology Press, Cambridge 1943)Google Scholar
  38. 4.38.
    S. Bennett: A History of Control Engineering 1930–1955 (Peregrinus, Stevenage 1993) p. 142zbMATHGoogle Scholar
  39. 4.39.
    H.J. James, N.B. Nichols, R.S. Phillips: Theory of Servomechanisms, Radiation Laboratory, Vol. 25 (McGraw-Hill, New York 1947)Google Scholar
  40. 4.40.
    C.C. Bissell: Pioneers of control: an interview with Arnold Tustin, IEE Rev. 38, 223–226 (1992)CrossRefGoogle Scholar
  41. 4.41.
    A.L. Whiteley: Theory of servo systems with particular reference to stabilization, J. Inst. Electr. Eng. 93, 353–372 (1946)Google Scholar
  42. 4.42.
    C.C. Bissell: Six decades in control: an interview with Winfried Oppelt, IEE Rev. 38, 17–21 (1992)CrossRefGoogle Scholar
  43. 4.43.
    C.C. Bissell: An interview with Hans Sartorius, IEEE Control Syst. Mag. 27, 110–112 (2007)CrossRefGoogle Scholar
  44. 4.44.
    W.R. Evans: Control system synthesis by root locus method, Trans. AIEE 69, 1–4 (1950)Google Scholar
  45. 4.45.
    A.A. Andronov, S.E. Khaikin: Theory of Oscillators (Princeton Univ. Press, Princeton 1949), translated and adapted by S. Lefschetz from Russian 1937 publicationGoogle Scholar
  46. 4.46.
    L.A. MacColl: Fundamental Theory of Servomechanisms (Van Nostrand, Princeton 1945)Google Scholar
  47. 4.47.
    S. Bennett: The emergence of a discipline: automatic control 1940–1960, Automatica 12, 113–121 (1976)CrossRefzbMATHGoogle Scholar
  48. 4.48.
    E.A. Feigenbaum: Soviet cybernetics and computer sciences, 1960, Commun. ACM 4(12), 566–579 (1961)CrossRefGoogle Scholar
  49. 4.49.
    R. Bellman: Dynamic Programming (Princeton Univ. Press, Princeton 1957)zbMATHGoogle Scholar
  50. 4.50.
    R.E. Kalman: Contributions to the theory of optimal control, Bol. Soc. Mat. Mex. 5, 102–119 (1960)MathSciNetGoogle Scholar
  51. 4.51.
    R.E. Kalman: A new approach to linear filtering and prediction problems, Trans. ASME J. Basic Eng. 82, 34–45 (1960)Google Scholar
  52. 4.52.
    R.E. Kalman, R.S. Bucy: New results in linear filtering and prediction theory, Trans. ASME J. Basic Eng. 83, 95–108 (1961)MathSciNetGoogle Scholar
  53. 4.53.
    L.S. Pontryagin, V.G. Boltyansky, R.V. Gamkrelidze, E.F. Mishchenko: The Mathematical Theory of Optimal Processes (Wiley, New York 1962)zbMATHGoogle Scholar
  54. 4.54.
    T.J. Williams: Computer control technology – past, present, and probable future, Trans. Inst. Meas. Control 5, 7–19 (1983)CrossRefGoogle Scholar
  55. 4.55.
    C.A. Davis: Industrial Electronics: Design and Application (Merrill, Columbus 1973) p. 458Google Scholar
  56. 4.56.
    T. Williams, S.Y. Nof: Control models. In: Handbook of Industrial Engineering, 2nd edn., ed. by G. Salvendy (Wiley, New York 1992) pp. 211–238Google Scholar
  57. 4.57.
    J.C. Willems: In control, almost from the beginning until the day after tomorrow, Eur. J. Control 13, 71–81 (2007)CrossRefMathSciNetGoogle Scholar
  58. 4.58.
    G.S. Brown, D.P. Campbell: Instrument engineering: its growth and promise in process-control problems, Mech. Eng. 72, 124–127 (1950)Google Scholar
  59. 4.59.
    G.S. Brown, D.P. Campbell: Instrument engineering: its growth and promise in process-control problems, Mech. Eng. 72, 136 (1950)Google Scholar
  60. 4.60.
    G.S. Brown, D.P. Campbell: Instrument engineering: its growth and promise in process-control problems, Mech. Eng. 72, 587–589 (1950), discussionGoogle Scholar
  61. 4.61.
    N. Wiener: Cybernetics: Or Control and Communication in the Animal and the Machine (Wiley, New York 1948)Google Scholar
  62. 4.62.
    D.F. Noble: Forces of Production. A Social History of Industrial Automation (Knopf, New York 1984)Google Scholar
  63. 4.63.
    S.Y. Nof: Collaborative control theory for e-Work, e-Production and e-Service, Annu. Rev. Control 31, 281–292 (2007)CrossRefGoogle Scholar
  64. 4.64.
    G. Johannesen: From control to cognition: historical views on human engineering, Stud. Inf. Control 16(4), 379–392 (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Department of Communication and SystemsThe Open UniversityMilton KeynesUK

Personalised recommendations