Skip to main content

Reliability, Maintainability, and Safety

  • Chapter

Part of the book series: Springer Handbooks ((SHB))

Abstract

Within the last 20 years, digital automation has increasingly taken over manual control functions in manufacturing plants, as well as in products. With this shift, reliability, maintainability, and safety responsibilities formerly delegated to skilled human operators have increasingly shifted to automation systems that now close the loop. In order to design highly dependable automation systems, the original concept of design for reliability has been refined and greatly expanded to include new engineering concepts such as availability, safety, maintainability, and survivability. Technical definitions for these terms are provided in this chapter, as well as an overview of engineering methods that have been used to achieve these properties. Current standards and industrial practice in the design of dependable systems are noted. The integration of dependable automation systems in multilevel architectures has also evolved greatly, and new concepts of control and monitoring, remote diagnostics, software safety, and automated reconfigurability are described. An extended example of the role of dependable automation systems at the enterprise level is also provided. Finally, recent research trends, such as automated verification, are cited, and many citations from the extensive literature on this topic are provided.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   309.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

CBM:

condition-based maintenance

CMM:

capability maturity model

CMTM:

control, maintenance, and technical management

CRM:

customer relationship management

DCS:

distributed control system

DCS:

disturbance control standard

EAI:

enterprise architecture interface

ERP:

enterprise resource planning

FMECA:

failure mode, effects and criticality analysis

HMI:

human machine interface

Hazop:

hazardous operation

IEC:

International Electrotechnical Commission

IMT:

infotronics and mechatronics technology

MES:

manufacturing execution system

MTBF:

mean time between failure

MTTR:

mean time to repair

OAGIS:

open applications group

OEM:

original equipment manufacturer

OPC:

online process control

PLC:

programmable logic controller

RFID:

radiofrequency identification

RMS:

reconfigurable manufacturing systems

RMS:

reliability, maintainability, and safety

RMS:

root-mean-square

RPN:

risk priority number

SCADA:

supervisory control and data acquisition

SCM:

supply chain management

SIL:

safety integrity level

SOA:

service-oriented architecture

TTF:

time to failure

TTR:

time to repair

UML:

universal modeling language

References

  1. T.L. Johnson: Improving automation software dependability: a role for formal methods?, Control Eng. Pract. 15(11), 1403–1415 (2007)

    Article  Google Scholar 

  2. J. Stark: Handbook of Manufacturing Automation and Integration (Auerbach, Boston 1989)

    Google Scholar 

  3. R.S. Dorf, A. Kusiak: Handbook of Design, Manufacturing and Automation (Wiley, New York 1994)

    Book  Google Scholar 

  4. A. Ollero, G. Morel, P. Bernus, S.Y. Nof, J. Sasiadek, S. Boverie, H. Erbe, R. Goodall: From MEMS to enterprise systems, IFAC Annu. Rev. Control 26(2), 151–162 (2002)

    Article  Google Scholar 

  5. S.Y. Nof, G. Morel, L. Monostori, A. Molina, F. Filip: From plant and logistics control to multi-enterprise collaboration, IFAC Annu. Rev. Control 30(1), 55–68 (2006)

    Article  Google Scholar 

  6. G. Morel, P. Valckenaers, J.M. Faure, C.E. Pereira, C. Diedrich: Manufacturing plant control challenges and issues, IFAC Control Eng. Pract. 15(11), 1321–1331 (2007)

    Article  Google Scholar 

  7. A. Avizienis, J.C. Laprie, B. Randell, C. Landwehr: Basic Concepts and Taxonomy of Dependable and Secure Computing, IEEE Trans. Dependable Secur. Comput. 1(1), 11–33 (2004)

    Article  Google Scholar 

  8. S.E. Rigdon, A.P. Basu: Statistical Methods for the Reliability of Repairable Systems (Lavoisier, Paris 2000)

    MATH  Google Scholar 

  9. J. Moubray: Reliability-Centered Maintenance (Industrial, New York 1997)

    Google Scholar 

  10. A. Avizienis, J.C. Laprie, B. Randell: Fundamental concepts of dependability, LAAS Techn. Rep. 1145, 1–19 (2001), http://www.laas.fr

    Google Scholar 

  11. J.W. Foster, D.T. Philips, T.R. Rogers: Reliability Availability and Maintainability: The Assurance Technologies Applied to the Procurement of Production Systems (MA Press, 1979)

    Google Scholar 

  12. M. Pecht: Product Reliability, Maintainability and Supportability Handbook (CRC, New York 1995)

    Google Scholar 

  13. H. Erbe: Technologies for cost-effective automation in manufacturing, IFAC Professional Briefs (2003) pp. 1–32

    Google Scholar 

  14. IEEE: IEEE Standard Computer Dictionary: A Compilation of IEEE Standard Computer Glossaries (IEEE, 1990), http://ieeexplore.ieee.org/xpls/abs_all.jsp?tp=&isnumber=4683&arnumber=182763&punumber=2267

  15. D. Kumar, J. Crocker, J. Knezevic, M. El-Haram: Reliability, Maintenance and Logistic Support. A life Cycle Approach (Springer, Berlin, Heidelberg 2000)

    Google Scholar 

  16. IEC 61508: Functional safety of electrical/electronic/ programmable electronic (E/E/PE) safety-related systems

    Google Scholar 

  17. T. Nakagawa: Maintenance Theory of Reliability (Springer, London 2005)

    Google Scholar 

  18. W.E. Deming: Out of the Crisis: For Industry, Government, Education (MIT Press, Cambridge 2000)

    Google Scholar 

  19. C.G. Cassandras, S. Lafortune: Introduction to Discrete Event Systems (Kluwer Academic, Norwell 1999)

    MATH  Google Scholar 

  20. F. Lhote, P. Chazelet, M. Dulmet: The extension of principles of cybernetics towards engineering and manufacturing, Annu. Rev. Control 23(1), 139–148 (1999)

    Article  Google Scholar 

  21. N. Viswanadham, Y. Narahari: Performance Modeling of Automated Manufacturing Systems (Prentice-Hall, Englewood Cliffs 1992)

    Google Scholar 

  22. http://www.sei.cmu.edu/cmmi

  23. http://www.oooneida.info

  24. M.C. Paulk: How ISO 9001 compares with the CMM, IEEE Softw. 12(1), 74–83 (1995)

    Article  Google Scholar 

  25. K. Polzer: Ease of use in engineering – availability and safety during runtime, Autom. Technol. Pract. 1, 49–60 (2004)

    Google Scholar 

  26. T. Shell: Systems functions implementation and behavioural modelling: system theoretic approach, Int. J. Syst. Eng. 4(1), 58–75 (2001)

    Google Scholar 

  27. A. Moik: Engineering-related formal method for the development of safe industrial automation systems, Autom. Technol. Pract. 1, 45–53 (2003)

    Google Scholar 

  28. E.M. Clarke, O. Grunberg, D.A. Peled: Model Checking (MIT Press, Cambridge 2000)

    Google Scholar 

  29. J.R. Abrial: The B Book: Assigning Programs to Meanings (Cambridge Univ. Press, Cambridge 1996)

    Book  MATH  Google Scholar 

  30. T. Kim, D. Stringer-Calvert, S. Cha: Formal verification of functional properties of a SCR-style software requirements specification using PVS, Reliab. Eng. Syst. Saf. 87, 351–363 (2005)

    Article  Google Scholar 

  31. J. Yoo, T. Kim, S. Cha, J.-S. Lee, H.S. Son: A formal software requirements specification method for digital nuclear plant protection systems, Syst. Softw. 74(1), 73–83 (2005)

    Article  Google Scholar 

  32. S. Elkhattabi, D. Corbeel, J.C. Gentina: Integration of dependability in the conception of FMS, 7th IFAC Symp. on Inf. Control Probl. Manuf. Technol., Toronto (1992) pp. 169–174

    Google Scholar 

  33. R. Vogrig, P. Baracos, P. Lhoste, G. Morel, B. Salzemann: Flexible manufacturing shop, Manuf. Syst. 16(3), 43–55 (1987)

    Google Scholar 

  34. E. Zamaï, A. Chaillet-Subias, M. Combacau: An architecture for control and monitoring of discrete events systems, Comput. Ind. 36(1–2), 95–100 (1998)

    Article  Google Scholar 

  35. A.K.A. Toguyeni, E. Craye, L. Sekhri: Study of the diagnosability of automated production systems based on functional graphs, Math. Comput. Simul. 70(5–6), 377–393 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  36. M.G. Mehrabi, A.G. Ulsoy, Y. Koren: Reconfigurable manufacturing systems: key to future manufacturing, J. Intell. Manuf. 11(4), 403–419 (2000)

    Article  Google Scholar 

  37. ESPRIT II-2172 DIAS Distributed Intelligent Actuators and Sensors

    Google Scholar 

  38. ESPRIT III-6188 PRIAM Pre-normative Requirements for Intelligent Actuation and Measurement

    Google Scholar 

  39. ESPRIT III-6244 EIAMUG European Intelligent Actuation and Measurement User Group

    Google Scholar 

  40. ESPRIT IV-23525 IAM-PILOT Intelligent Actuation and Measurement Pilot

    Google Scholar 

  41. J.F. Pétin, B. Iung, G. Morel: Distributed intelligent actuation and measurement system within an integrated shop-floor organisation, Comput. Ind. J. 37, 197–211 (1998)

    Article  Google Scholar 

  42. http://www.predict.fr

  43. http://www.openoandm.org

  44. B. Iung, G. Morel, J.-B. Léger: Proactive maintenance strategy for harbour crane operation improvement, Robotica 21, 313–324 (2003)

    Article  Google Scholar 

  45. F.B. Vernadat: Interoperable enterprise systems: Principles, concepts and methods, IFAC Annu. Rev. Control. 31(1), 137–145 (2007)

    Article  Google Scholar 

  46. D. Galara: Roadmap to master the complexity of process operation to help operators improve safety, productivity and reduce environmental impact, Annu. Rev. Control 30, 215–222 (2006)

    Article  Google Scholar 

  47. http://www.resilience-engineering.org

  48. C.F. Kurtz, D.J. Snowden: The new dynamics of strategy: sense-making in a complex and complicated world, IBM Syst. J. 42(3), 462–483 (2003)

    Article  Google Scholar 

  49. ISO/IEC 15288, http://www.incose.org

  50. M. Bedau: Weak Emergence, Philosophical Perspectives: Mind, Causation and World, Vol. 11 (Blackwell, Oxford 1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gérard Morel Prof , Jean-François Pétin Prof or Timothy L. Johnson Dr .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Morel, G., Pétin, JF., Johnson, T.L. (2009). Reliability, Maintainability, and Safety. In: Nof, S. (eds) Springer Handbook of Automation. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78831-7_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-78831-7_42

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-78830-0

  • Online ISBN: 978-3-540-78831-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics