Advertisement

The Human Role in Automation

Chapter
Part of the Springer Handbooks book series (SHB)

Abstract

A survey of the history of how humans have interacted with automation is presented. Starting with the early introduction of automation into the Industrial Revolution to the modern applications that occur in unmanned air vehicle systems, many issues are brought to light. Levels of automation are quantified and a preliminary list delineating what tasks humans can perform better than machines is presented. A number of application areas are surveyed that have or are currently dealing with positive and negative issues as humans interact with machines. The application areas where humans specifically interact with automation include agriculture, communications systems, inspection systems, manufacturing, medical and diagnostic applications, robotics, and teaching. The benefits and disadvantages of how humans interact with modern automation systems are presented in a trade-off space discussion. The modern problems relating to how humans have to deal with automation include trust, social acceptance, loss of authority, safety concerns, adaptivity of automation leading to unplanned unexpectancy, cost advantages, and possible performance gained.

Keywords

Situational Awareness Inspection System Robotic Device Modern Application Human Role 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations

3-D

three-dimensional

IT

information technology

NASA

National Aeronautics and Space Administration

NIST

National Institute of Standards

TLX

task load index

References

  1. 17.1.
    T.B. Sheridan: Humans and Automation – System Design and Research Issues (Wiley, New York 2002), pp. 62, 163Google Scholar
  2. 17.2.
    G.E. Hoffmann: Concepts for the third generation of laboratory systems, Clinica Chimica Acta 278, 203–216 (1998)CrossRefGoogle Scholar
  3. 17.3.
    P.M. Fitts (ed.): Human Engineering for an Effective Air Navigation and Traffic Control System (National Research Council, Washington 1951)Google Scholar
  4. 17.4.
    A. Chapanis: On the allocation of functions between men and machines, Occup. Psychol. 39, 1–11 (1965)Google Scholar
  5. 17.5.
    A. Bye, E. Hollnagel, T.S. Brendeford: Human–machine function allocation: a functional modeling approach, Reliab. Eng. Syst. Saf. 64, 291–300 (1999)CrossRefGoogle Scholar
  6. 17.6.
    B.H. Kantowitz, R.D. Sorkin: Allocation of functions. In: Handbook of Human Factors, ed. by G. Salvendy (Wiley, New York 1987) pp. 355–369Google Scholar
  7. 17.7.
    N. Moray: Humans and machines: allocation of function. In: People in Control – Human Factors in Control Room Design, IEEE Control Eng., Vol. 60, ed. by J. Noyes, M. Bransby (IEEE, New York 2001) pp. 101–113Google Scholar
  8. 17.8.
    R. Parasuraman, T.B. Sheridan, C.D. Wickens: A model for types and levels of human interaction with automation, IEEE Trans. Syst. Man Cybern. A: Syst. Hum. 30(3), 286–297 (2000)CrossRefGoogle Scholar
  9. 17.9.
    T.B. Sheridan: Telerobotics, Automation, and Human Supervisory Control (MIT Press, Cambridge 1992), p. 26Google Scholar
  10. 17.10.
    L.J. Fogel, J. Lyman: The human component. In: Handbook of Automation, Computation, and Control, Vol. 3, ed. by E.M. Grabbe, S. Ramo, D.E. Wooldridge (Wiley, New York 1961)Google Scholar
  11. 17.11.
    M.L. Cummings, P.J. Mitchell: Operator scheduling strategies in supervisory control of multiple UAVs, Aerosp. Sci. Technol. 11, 339–348 (2007)CrossRefzbMATHGoogle Scholar
  12. 17.12.
    N.B. Sarter: Cockpit automation: from quantity to quality, for individual pilot to multiple agents. In: Automation and Human Performance, ed. by R. Parasuraman, M. Mouloua (Lawrence Erlbaum, Mahwah 1996)Google Scholar
  13. 17.13.
    C.E. Billings: Toward a human-centered aircraft automation philosophy, Int. J. Aviat. Psychol. 1(4), 261–270 (1991)CrossRefMathSciNetGoogle Scholar
  14. 17.14.
    C.E. Billings: Aviation Automation: The Search for a Human-Centered Approach (Lawrence Erlbaum Associates, Mahwah 1997)Google Scholar
  15. 17.15.
    D.O. Weitzman: Human-centered automation for air traffic control: the very idea. In: Human/Technology Interaction in Complex Systems, ed. by E. Salas (JAI Press, Stamford 1999)Google Scholar
  16. 17.16.
    W.B. Rouse, J.M. Hammer: Assessing the impact of modeling limits on intelligent systems, IEEE Trans. Syst. Man Cybern. 21(6), 1549–1559 (1991)CrossRefGoogle Scholar
  17. 17.17.
    C.D. Wickens: Designing for situational awareness and trust in automation, Proc. Int. Fed. Autom. Control Conf. Integr. Syst. Eng. (Pergamon, Elmsford 1994)Google Scholar
  18. 17.18.
    G. Salvendy: Research issues in the ergonomics, behavioral, organizational and management aspects of office automation. In: Human Aspects in Office Automation, ed. by B.G.F. Cohen (Elsevier, Amsterdam 1984) pp. 115–126Google Scholar
  19. 17.19.
    K.R. Boff: Revolutions and shifting paradigms in human factors and ergonomics, Appl. Ergon. 37, 391–399 (2006)CrossRefGoogle Scholar
  20. 17.20.
    J.C.R. Licklider: Man–computer symbiosis. IRE Trans. Hum. Factors Electron. In: Digital Center Research Reports, Vol. 61, ed. by J.C.R. Licklider, R.W. Taylor (Human Factors Accociation, Palo Alto 1990), reprinted in Memoriam (1960)Google Scholar
  21. 17.21.
    W.B. Rouse, K.R. Boff: Impacts of next-generation concepts of military operations on human effectiveness, Inf. Knowl. Syst. Manag. 2, 1–11 (2001)Google Scholar
  22. 17.22.
    M. Kassler: Agricultural automation in the new Millennium, Comput. Electron. Agric. 30(1–3), 237–240 (2001)CrossRefGoogle Scholar
  23. 17.23.
    N. Sigrimis, P. Antsaklis, P. Groumpos: Advances in control of agriculture and the environment, IEEE Control Syst. Mag. 21(5), 8–12 (2001)CrossRefGoogle Scholar
  24. 17.24.
    J.R. Martinez-de Dios, C. Serna, A. Ollero: Computer vision and robotics techniques in fish farms, Robotica 21, 233–243 (2003)CrossRefGoogle Scholar
  25. 17.25.
    O. Diegel, G. Bright, J. Potgieter: Bluetooth ubiquitous networks: seamlessly integrating humans and machines, Assem. Autom. 24(2), 168–176 (2004)CrossRefGoogle Scholar
  26. 17.26.
    L. Tarrini, R.B. Bandinelli, V. Miori, G. Bertini: Remote Control of Home Automation Systems with Mobile Devices, Lecture Notes in Computer Science (Springer, Berlin Heidelberg 2002)Google Scholar
  27. 17.27.
    X. Jiang, A.K. Gramopadhye, B.J. Melloy, L.W. Grimes: Evaluation of best system performance: human, automated, and hybrid inspection systems, Hum. Factor Ergon. Manuf. 13(2), 137–152 (2003)CrossRefGoogle Scholar
  28. 17.28.
    D. Chetverikov: Pattern regularity as a visual key, Image Vis. Comput. 18(12), 975–985 (2000)CrossRefMathSciNetGoogle Scholar
  29. 17.29.
    D.D. Woods: Decomposing automation: apparent simplicity, real complexity. In: Automation and Human Performance – Theory and Applications, ed. by R. Parasuraman, M. Mouloua (Lawrence Erlbaum, Mahwah 1996) pp. 3–17Google Scholar
  30. 17.30.
    A. Mital, A. Pennathur: Advanced technologies and humans in manufacturing workplaces: an interdependent relationship, Int. J. Ind. Ergon. 33, 295–313 (2004)CrossRefGoogle Scholar
  31. 17.31.
    S.P. Layne, T.J. Beugelsdijk: Mass customized testing and manufacturing via the Internet, Robot. Comput.-Integr. Manuf. 14, 377–387 (1998)CrossRefGoogle Scholar
  32. 17.32.
    M.B. Weinger: Automation in anesthesiology: Perspectives and considerations. In: Human–Automation Interaction – Research and Practice, ed. by M. Mouloua, J.M. Koonce (Lawrence Erlbaum, Mahwah 1996) pp. 233–240Google Scholar
  33. 17.33.
    D.W. Repperger: Human factors in medical devices. In: Encyclopedia of Medical Devices and Instrumentation, ed. by J.G. Webster (Wiley, New York 2006) pp. 536–547Google Scholar
  34. 17.34.
    D.B. Camarillo, T.M. Krummel, J.K. Salisbury: Robotic technology in surgery: past, present and future, Am. J. Surgery 188(4), 2–15 (2004), Supplement 1CrossRefGoogle Scholar
  35. 17.35.
    E. Dummermuth: Advanced diagnostic methods in process control, ISA Trans. 37(2), 79–85 (1998)CrossRefGoogle Scholar
  36. 17.36.
    V. Potkonjak, S. Tzafestas, D. Kostic: Concerning the primary and secondary objectives in robot task definition – the learn from humans principle, Math. Comput. Simul. 54, 145–157 (2000)CrossRefMathSciNetGoogle Scholar
  37. 17.37.
    A. Halme, T. Luksch, S. Ylonen: Biomimicing motion control of the WorkPartner robot, Ind. Robot 31(2), 209–217 (2004)CrossRefGoogle Scholar
  38. 17.38.
    D.G. Perrin: Itʼs all about learning, Int. J. Instruct. Technol. Dist. Learn. 1(7), 1–2 (2004)Google Scholar
  39. 17.39.
    K.M.G. Taylor, G. Harding: Teaching, learning and research in McSchools of Pharmacy, Pharm. Educ. 2(2), 43–49 (2002)CrossRefGoogle Scholar
  40. 17.40.
    N.E. Gibbs: The SEI education program: the challenge of teaching future software engineers, Commun. ACM 32(5), 594–605 (1989)CrossRefMathSciNetGoogle Scholar
  41. 17.41.
    C.D. Grant, B.R. Dickson: New approaches to teaching and learning for industry-based engineering professionals, Proc. 2002 ASEE Annu. Conf. Expo., session 2213 (2002)Google Scholar
  42. 17.42.
    Z. Turk: Multimedia: providing students with real world experiences, Autom. Constr. 10, 247–255 (2001)CrossRefGoogle Scholar
  43. 17.43.
    B. Muir: Trust between humans and machines, and the design of decision aids, Int. J. Man–Mach. Stud. 27, 527–539 (1987)CrossRefMathSciNetGoogle Scholar
  44. 17.44.
    J. Lee, K. See: Trust in automation: designing for appropriate reliance, Hum. Factors 46(1), 50–80 (2004)Google Scholar
  45. 17.45.
    J. Lee, N. Moray: Trust and the allocation of function in the control of automatic systems, Ergonomics 35, 1243–1270 (1992)CrossRefGoogle Scholar
  46. 17.46.
    E.L. Wiener, R.E. Curry: Flight deck automation: promises and problems, Ergonomics 23(10), 995–1011 (1980)CrossRefGoogle Scholar
  47. 17.47.
    C.D. Wickens, R. Marsh, M. Raby, S. Straus, R. Cooper, C.L. Hulin, F. Switzer: Aircrew performance as a function of automation and crew composition: a simulator study, Proc. Hum. Factors Soc. 33rd Annu. Meet., Santa Monica (Human Factors Society, 1989) pp. 792–796Google Scholar
  48. 17.48.
    J. Lee, N. Moray: Trust, self-confidence, and operatorsʼ adaptation to automation, Int. J. Hum.–Comput. Stud. 40, 153–184 (1994)CrossRefGoogle Scholar
  49. 17.49.
    A. Uggirala, A.K. Gramopadhye, B.J. Melloy, J.E. Toler: Measurement of trust in complex and dynamic systems using a quantitative approach, Int. J. Ind. Ergon. 34, 175–186 (2004)CrossRefGoogle Scholar
  50. 17.50.
    H.-H. Erbe: Introduction to low cost/cost effective automation, Robotica 21, 219–221 (2003)CrossRefGoogle Scholar
  51. 17.51.
    J.Z. Sasiadek, Q. Wang: Low cost automation using INS/GPS data fusion for accurate positioning, Robotica 21, 255–260 (2003)CrossRefGoogle Scholar
  52. 17.52.
    J.G. Morrison, J.P. Gluckman: Definitions and prospective guidelines for the application of adaptive automation. In: Human Performance in Automated Systems: Current Research and Trends, ed. by M. Mouloua, R. Parasuraman (Lawrence Erlbaum, Hillsdale 1994), pp. 256–263Google Scholar
  53. 17.53.
    W.B. Rouse: Adaptive aiding for human/computer control, Hum. Factors 30, 431–443 (1988)Google Scholar
  54. 17.54.
    S.G. Hart, L.E. Staveland: Development of the NASA-TLX (task load index): results of empirical and theoretical research. In: Human Mental Workload, ed. by P.A. Hancock, N. Meshkati (Elsevier, Amsterdam 1988)Google Scholar
  55. 17.55.
    S.F. Scallen, P.A. Hancock: Implementing adaptive function allocation, Int. J. Aviat. Psychol. 11(2), 197–221 (2001)CrossRefGoogle Scholar
  56. 17.56.
    D.B. Kaber, J.M. Riley, K.-W. Tan, M. Endsley: On the design of adaptive automation for complex systems, Int. J. Cogn. Ergon. 5(1), 37–57 (2001)CrossRefGoogle Scholar
  57. 17.57.
    Y. Mineo, Y. Suzuki, T. Niinomi, K. Iwatani, H. Sekiguchi: Safety assessment of factory automation systems, Electron. Commun. Jap. Part 3, 83(2), 96–109 (2000)CrossRefGoogle Scholar
  58. 17.58.
    T. Inagaki: Design of human–machine interactions in light of domain-dependence of human-centered automation, Cogn. Tech. Work 8, 161–167 (2006)CrossRefGoogle Scholar
  59. 17.59.
    T. Inagaki: Automation and the cost of authority, Int. J. Ind. Ergon. 31, 169–174 (2003)CrossRefGoogle Scholar
  60. 17.60.
    D. Norman: The problem with automation: inappropriate feedback and interaction, not over-automation, Proc. R. Soc. Lond. B237 (1990) pp. 585–593Google Scholar
  61. 17.61.
    R.D. Sorkin, D.D. Woods: Systems with human monitors: a signal detection analysis, Hum.–Comput. Interact. 1, 49–75 (1985)CrossRefGoogle Scholar
  62. 17.62.
    R.D. Sorkin: Why are people turning off our alarms?, J. Acoust. Soc. Am. 84, 1107–1108 (1988)CrossRefGoogle Scholar
  63. 17.63.
    R.D. Sorkin, B.H. Kantowitz, S.C. Kantowitz: Likelihood alarm displays, Hum. Factors 30, 445–459 (1988)Google Scholar
  64. 17.64.
    C.A. Phillips: Human Factors Engineering (Wiley, New York 2000)Google Scholar
  65. 17.65.
    J. Rasmussen: Information Processing and Human–Machine Interaction (North-Holland, New York 1986)Google Scholar
  66. 17.66.
    J.M. Haight, V. Kecojevic: Automation vs. human intervention: What is the best fit for the best performance?, Process. Saf. Prog. 24(1), 45–51 (2005)CrossRefGoogle Scholar
  67. 17.67.
    R. Parasuraman, V. Riley: Humans and automation: use, misuse, disuse, and abuse, Hum. Factors 39(2), 230–253 (1997)CrossRefGoogle Scholar
  68. 17.68.
    B.H. Kantowitz, J.L. Campbell: Pilot workload and flight deck automation. In: Automation and Human Performance – Theory and Applications, ed. by R. Parasuraman, M. Mouloua (Lawrence Erlbaum Associates, Mahwah 1996) pp. 117–136Google Scholar
  69. 17.69.
    J. Cernetic: On cost-effectiveness of human-centered and socially acceptable robot and automation systems, Robotica 21, 223–232 (2003)CrossRefGoogle Scholar
  70. 17.70.
    S. Zuboff: In the Age of the Smart Machine: The Future of Work and Power (Basic Books, New York 1988)Google Scholar
  71. 17.71.
    S. Sastry: A SmartSpace for automation, Assem. Autom. 24(2), 201–209 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Air Force Research LaboratoryWright Patterson Air Force BaseDaytonUSA
  2. 2.Department of Biomedical, Industrial and Human Factors EngineeringWright State UniversityDaytonUSA

Personalised recommendations