Virtual Reality and Automation

Part of the Springer Handbooks book series (SHB)


Virtual reality of human activities (e.g., in design, manufacturing, medical care, exploration or military operations) often concentrates on an automated interface between virtual reality (VR) technology and the theory and practice of these activities. In this chapter we focus mainly on the role of VR technology in developing this interface. Although the scope and range of applications is large, two illustrative areas (production/service applications and medical applications) are explained in some detail to offer some insight into the magnitude of the benefits and existing challenges.


Virtual Reality Cataract Surgery Application Programming Interface Haptic Feedback Haptic Device 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.





applications programming interface


computer-aided manufacturing


personal computer


virtual environment


virtual reality


  1. 15.1.
    B. Delaney: The Market for Visual Simulation/Virtual Reality Systems, 6th edn. (Cyberedge Information Services, Mountain View 2004), Google Scholar
  2. 15.2.
    H.Y. Kan, V.G. Duffy, C.-J. Su: An Internet virtual reality collaborative environment for effective product design, Comput. Ind. 45(2), 197–213 (2001)CrossRefGoogle Scholar
  3. 15.3.
    M. Pouliquen, A. Bernard, J. Marsot, L. Chodorge: Virtual hands and virtual reality multimodal platform to design safer industrial systems, Comput. Ind. 58(1), 46–56 (2007)CrossRefGoogle Scholar
  4. 15.4.
    B. Stone, G. Pegman: Robots and virtual reality in the nuclear industry, Serv. Robot 1(2), 24–27 (1995)Google Scholar
  5. 15.5.
    P.R. Chakraborty, C.J. Bise: Virtual-reality-based model for task-training of equipment operators in the mining industry, Miner. Res. Eng. 9(4), 437–449 (2000)Google Scholar
  6. 15.6.
    S. Ottosson: Virtual reality in the product development process, J. Eng. Des. 13(2), 159–172 (2002)CrossRefGoogle Scholar
  7. 15.7.
    Y. Jun, J. Liu, R. Ning, Y. Zhang: Assembly process modeling for virtual assembly process planning, Int. J. Comput. Integr. Manuf. 18(6), 442–451 (2005)CrossRefGoogle Scholar
  8. 15.8.
    D. Lee, M. Woo, D. Vredevoe, J. Kimmick, W.J. Karplus, D.J. Valentino: Ophthalmoscopic examination training using virtual reality, Virtual Real. 4(3), 184–191 (1999)CrossRefGoogle Scholar
  9. 15.9.
    C.H. Park, G. Jang, Y.H. Chai: Development of a virtual reality training system for live-line workers, Int. J. Human-Comput. Interact. 20(3), 285–303 (2006)CrossRefGoogle Scholar
  10. 15.10.
    V.S. Pantelidis: Virtual reality and engineering education, Comput. Appl. Eng. Educ. 5(1), 3–12 (1997)CrossRefGoogle Scholar
  11. 15.11.
    Y.S. Shin: Virtual reality simulations in Web-based science education, Comput. Appl. Eng. Educ. 10(1), 18–25 (2002)CrossRefGoogle Scholar
  12. 15.12.
    T.M. Rhyne: Going virtual with geographic information and scientific visualization, Comput. Geosci. 23(4), 489–491 (1997)CrossRefGoogle Scholar
  13. 15.13.
    O.N. Kwon, S.H. Kim, Y. Kim: Enhancing spatial visualization through virtual reality (VR) on the Web: software design and impact analysis, J. Comput. Math. Sci. Teach. 21(1), 17–31 (2002)Google Scholar
  14. 15.14.
    P. Queau: Televirtuality: the merging of telecommunications and virtual reality, Comput. Graph. 17(6), 691–693 (1993)CrossRefGoogle Scholar
  15. 15.15.
    M. Torabi: Mobile virtual reality services, Bell Labs Tech. J. 7(2), 185–194 (2002)CrossRefGoogle Scholar
  16. 15.16.
    P. Banerjee, D. Zetu: Virtual Manufacturing (Wiley, New York 2001)Google Scholar
  17. 15.17.
    P. Banerjee, C. Luciano, L. Florea, G. Dawe: Compact haptic and augmented virtual reality system, US Patent Appl. No. 11/338434 (2006), (previous version: C. Luciano, P. Banerjee, L. Florea, G. Dawe: Design of the ImmersiveTouch: A High-Performance Haptic Augmented Virtual Reality System, CD ROM Proc. Human-Comput. Interact. (HCI) Int. Conf. (Las Vegas 2005))Google Scholar
  18. 15.18.
    P.P. Banerjee, C. Luciano, G.M. Lemole Jr, F.T. Charbel, M.Y. Oh: Accuracy of ventriculostomy catheter placement on computer tomography data using head and hand tracked high resolution virtual reality, J. Neurosurg. 107(3), 515–521 (2007)CrossRefGoogle Scholar
  19. 15.19.
    C. Luciano: Haptics-based virtual reality Periodontal Training Simulator. Ph.D. Thesis (University of Illinois, Chicago 2006)Google Scholar
  20. 15.20.
    A.D. Steinberg, P. Banerjee, J. Drummond, M. Zefran: Progress in the development of a haptic/virtual reality simulation program for scaling and root planing, J. Dent. Educ. 67(2), 161 (2003)Google Scholar
  21. 15.21.
    G. Burdea, P. Coiffet: Virtual Reality Technology, 2nd edn. (Wiley Interscience, New York 2003)Google Scholar
  22. 15.22.
    C. Luciano, P. Banerjee, G.M. Lemole, J. Charbel, F. Charbel: Second generation haptic ventriculostomy simulator using the immersivetouch system, Proc. 14th Med. Meets Virtual Real. (2006) pp. 343–348Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Department of Mechanical and Industrial EngineeringUniversity of IllinoisChicagoUSA

Personalised recommendations