Artificial Intelligence and Automation

Part of the Springer Handbooks book series (SHB)


Artificial intelligence (AI) focuses on getting machines to do things that we would call intelligent behavior. Intelligence – whether artificial or otherwise – does not have a precise definition, but there are many activities and behaviors that are considered intelligent when exhibited by humans and animals. Examples include seeing, learning, using tools, understanding human speech, reasoning, making good guesses, playing games, and formulating plans and objectives. AI focuses on how to get machines or computers to perform these same kinds of activities, though not necessarily in the same way that humans or animals might do them.


Markov Decision Process Parking Space Classical Planning Nonterminal Symbol Bayesian Reasoning 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



artificial intelligence


context-free grammar


constraint programming


coordination protocol


deoxyribonucleic acid


electronic design automation


hidden Markov model


hierarchical task network


Markov decision process


National Aeronautics and Space Administration


natural-language processing


nominal performance


nondeterministic polynomial-time


web ontology language


probabilistic context-free grammar


planning domain definition language


probability distribution function


programming in logics


real-time dynamic programming


temporal action logic planner


temporal logic planner


unmanned aerial vehicle


  1. 14.1.
    A. Newell, H.A. Simon: Computer science as empirical inquiry: Symbols and search, Assoc. Comput. Mach. Commun. 19(3), 113–126 (1976)MathSciNetGoogle Scholar
  2. 14.2.
    S. Hedberg: Proc. Int. Conf. Artif. Intell. (IJCAI) 03 conference highlights, AI Mag. 24(4), 9–12 (2003)Google Scholar
  3. 14.3.
    C. Kuykendall: Analyzing solitaire, Science 283(5403), 791 (1999)CrossRefGoogle Scholar
  4. 14.4.
    R. Bjarnason, P. Tadepalli, A. Fern: Searching solitaire in real time, Int. Comput. Games Assoc. J. 30(3), 131–142 (2007)Google Scholar
  5. 14.5.
    E. Horowitz, S. Sahni: Fundamentals of Computer Algorithms (Computer Science, Potomac 1978)zbMATHGoogle Scholar
  6. 14.6.
    N. Nilsson: Principles of Artificial Intelligence (Morgan Kaufmann, San Francisco 1980)zbMATHGoogle Scholar
  7. 14.7.
    D. Navinchandra: The recovery problem in product design, J. Eng. Des. 5(1), 67–87 (1994)Google Scholar
  8. 14.8.
    S. Russell, P. Norvig: Artificial Intelligence, A Modern Approach (Prentice Hall, Englewood Cliffs 1995)zbMATHGoogle Scholar
  9. 14.9.
    S. Robinson: Computer scientists find unexpected depths in airfare search problem, SIAM News 35(1), 1–6 (2002)Google Scholar
  10. 14.10.
    C. Le Pape: Implementation of resource constraints in ilog schedule: a library for the development of constraint-based scheduling systems, Intell. Syst. Eng. 3, 55–66 (1994)CrossRefGoogle Scholar
  11. 14.11.
    P. Shaw: Using constraint programming and local search methods to solve vehicle routing problems, Proc. 4th Int. Conf. Princ. Pract. Constraint Program. (1998) pp. 417–431Google Scholar
  12. 14.12.
    P. Albertand, L. Henocque, M. Kleiner: Configuration based workflow composition, IEEE Int. Conf. Web Serv., Vol. 1 (2005) pp. 285–292Google Scholar
  13. 14.13.
    J. Pearl: Heuristics (Addison-Wesley, Reading 1984)Google Scholar
  14. 14.14.
    R. Dechter: Constraint Processing (Morgan Kaufmann, San Francisco 2003)Google Scholar
  15. 14.15.
    J. Shoenfield: Mathematical Logic (Addison-Wesley, Reading 1967)zbMATHGoogle Scholar
  16. 14.16.
    J. Pearl, S. Russell: Bayesian networks. In: Handbook of Brain Theory and Neural Networks, ed. by M.A. Arbib (MIT Press, Cambridge 2003) pp. 157–160Google Scholar
  17. 14.17.
    J. Pearl: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference (Morgan Kaufmann, San Fransisco 1988)Google Scholar
  18. 14.18.
    M. Sahami, S. Dumais, D. Heckerman, E. Horvitz: A bayesian approach to filtering junk e-Mail. In: Learning for Text Categorization: Papers from the 1998 Workshop AAAI Technical Report WS-98-05 (Madison 1998)Google Scholar
  19. 14.19.
    J.A. Zdziarski: Ending Spam: Bayesian Content Filtering and the Art of Statistical Language Classification (No Starch, San Francisco 2005)Google Scholar
  20. 14.20.
    D. Quinlan: BayesInSpamAssassin, (2005)
  21. 14.21.
    K.M. Hanson: Introduction to bayesian image analysis. In: Medical Imaging: Image Processing, Vol. 1898, ed. by M.H. Loew, (Proc. SPIE, 1993) pp. 716–732Google Scholar
  22. 14.22.
    L. Denoyer, P. Gallinari: Bayesian network model for semistructured document classification, Inf. Process. Manage. 40, 807–827 (2004)CrossRefGoogle Scholar
  23. 14.23.
    S. Fox, K. Karnawat, M. Mydland, S. Dumais, T. White: Evaluating implicit measures to improve web search, ACM Trans. Inf. Syst. 23(2), 147–168 (2005)CrossRefGoogle Scholar
  24. 14.24.
    L. Zadeh, G.J. Klir, Bo Yuan: Fuzzy Sets, Fuzzy Logic, and Fuzzy Systems: Selected Papers by Lotfi Zadeh (World Scientific, River Edge 1996)zbMATHGoogle Scholar
  25. 14.25.
    G.J. Klir, U.S. Clair, B. Yuan: Fuzzy Set Theory: Foundations and Applications (Prentice Hall, Englewood Cliffs 1997)Google Scholar
  26. 14.26.
    A. Tate: Planning. In: MIT Encyclopedia of the Cognitive Sciences, (1999) pp. 652–653Google Scholar
  27. 14.27.
    T. Estlin, R. Castano, B. Anderson, D. Gaines, F. Fisher, M. Judd: Learning and planning for Mars rover science, Proc. Int. Joint Conf. Artif. Intell. (IJCAI) (2003)Google Scholar
  28. 14.28.
    S.K. Gupta, D.A. Bourne, K. Kim, S.S. Krishanan: Automated process planning for sheet metal bending operations, J. Manuf. Syst. 17(5), 338–360 (1998)CrossRefGoogle Scholar
  29. 14.29.
    A. Gerevini, D. Long: Plan constraints and preferences in pddl3: The language of the fifth international planning competition. Technical Report (University of Brescia, 2005), available at
  30. 14.30.
    A.L. Blum, M.L. Furst: Fast planning through planning graph analysis, Proc. Int. Joint Conf. Artif. Intell. (IJCAI) (1995) pp. 1636–1642Google Scholar
  31. 14.31.
    A. Tate, B. Drabble, R. Kirby: O-Plan2: An Architecture for Command, Planning and Control (Morgan Kaufmann, San Francisco 1994)Google Scholar
  32. 14.32.
    D.E. Wilkins: Practical Planning: Extending the Classical AI Planning Paradigm (Morgan Kaufmann, San Mateo 1988)Google Scholar
  33. 14.33.
    D. Nau, T.-C. Au, O. Ilghami, U. Kuter, J.W. Murdock, D. Wu, F. Yaman: SHOP2: An HTN planning system, J. Artif. Intell. Res. 20, 379–404 (2003)zbMATHGoogle Scholar
  34. 14.34.
    F. Bacchus, F. Kabanza: Using temporal logics to express search control knowledge for planning, Artif. Intell. 116(1/2), 123–191 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  35. 14.35.
    J. Kvarnström, P. Doherty: TALplanner: A temporal logic based forward chaining planner, Ann. Math. Artif. Intell. 30, 119–169 (2001)CrossRefGoogle Scholar
  36. 14.36.
    M. Fox, D. E. Smith: Special track on the 4th international planning competition. J. Artif. Intell. Res. (2006), available at
  37. 14.37.
    B. Bonet, H. Geffner: Labeled RTDP: Improving the convergence of real-time dynamic programming, Proc. 13th Int. Conf. Autom. Plan. Sched. (ICAPS) (AAAI, 2003), pp 12–21Google Scholar
  38. 14.38.
    D. Nau, T.-C. Au, O. Ilghami, U. Kuter, H. Muñoz-Avila, J.W. Murdock, D. Wu, F. Yaman: Applications of SHOP and SHOP2, IEEE Intell. Syst. 20(2), 34–41 (2005)CrossRefGoogle Scholar
  39. 14.39.
    M. Boddy, J. Gohde, J.T. Haigh, S. Harp: Course of action generation for cyber security using classical planning, Proc. 15th Int. Conf. Autom. Plan. Sched. (ICAPS) (2005)Google Scholar
  40. 14.40.
    M. Ghallab, D. Nau, P. Traverso: Automated Planning: Theory and Practice (Morgan Kaufmann, San Francisco 2004)zbMATHGoogle Scholar
  41. 14.41.
    S.M. Lavalle: Planning Algorithms (Cambridge University Press, Cambridge 2006)CrossRefzbMATHGoogle Scholar
  42. 14.42.
    J. Schaeffer, N. Burch, Y. Björnsson, A. Kishimoto, M. Müller, R. Lake, P. Lu, S. Sutphen: Checkers is solved, Science 317(5844), 1518–1522 (2007)Google Scholar
  43. 14.43.
    D.E. Knuth, R.W. Moore: An analysis of alpha-beta pruning, Artif. Intell. 6, 293–326 (1975)CrossRefzbMATHMathSciNetGoogle Scholar
  44. 14.44.
    G. Tesauro: Programming Backgammon Using Self-Teaching Neural Nets (Elsevier, Essex 2002)Google Scholar
  45. 14.45.
    S.J.J. Smith, D.S. Nau, T. Throop: Computer bridge: A big win for AI planning, AI Mag. 19(2), 93–105 (1998)Google Scholar
  46. 14.46.
    M. Harris: Laak-Eslami team defeats Polaris in man-machine poker championship, Poker News (2007), Available at
  47. 14.47.
    A. Parker, D. Nau, V.S. Subrahmanian: Overconfidence or paranoia? Search in imperfect-information games, Proc. Natl. Conf. Artif. Intell. (AAAI) (2006)Google Scholar
  48. 14.48.
    D. Billings: Thoughts on RoShamBo, Int. Comput. Games Assoc. J. 23(1), 3–8 (2000)MathSciNetGoogle Scholar
  49. 14.49.
    B. Johanson: Robust strategies and counter-strategies: Building a champion level computer poker player. Master Thesis (University of Alberta, 2007)Google Scholar
  50. 14.50.
    S. Hart, R.J. Aumann (Eds.): Handbook of Game Theory with Economic Applications 2 (North Holland, Amsterdam 1994)zbMATHGoogle Scholar
  51. 14.51.
    F.-H. Hsu: Chess hardware in deep blue, Comput. Sci. Eng. 8(1), 50–60 (2006)CrossRefGoogle Scholar
  52. 14.52.
    J. Schaeffer. One Jump Ahead: Challenging Human Supremacy in Checkers (Springer, Berlin, Heidelberg 1997)Google Scholar
  53. 14.53.
    J. Schaeffer: A gamut of games, AI Mag. 22(3), 29–46 (2001)Google Scholar
  54. 14.54.
    T. Sandholm: Expressive commerce and its application to sourcing, Proc. Innov. Appl. Artif. Intell. Conf. (IAAI) (AAAI Press, Menlo Park 2006)Google Scholar
  55. 14.55.
    T.-C. Au, D. Nau: Accident or intention: That is the question (in the iterated prisonerʼs dilemma), Int. Joint Conf. Auton. Agents and Multiagent Syst. (AAMAS) (2006)Google Scholar
  56. 14.56.
    C. Chelba, F. Jelinek: Structured language modeling for speech recognition, Conf. Appl. Nat. Lang. Inf. Syst. (NLDB) (1999)Google Scholar
  57. 14.57.
    B.H. Juang, L.R. Rabiner: Hidden Markov models for speech recognition, Technometrics 33(3), 251–272 (1991)CrossRefzbMATHMathSciNetGoogle Scholar
  58. 14.58.
    S. Lee, J. Tsujii, H. Rim: Lexicalized hidden Markov models for part-of-speech tagging, Proc. 18th Int. Conf. Comput. Linguist. (2000)Google Scholar
  59. 14.59.
    N. Chomsky: Syntactic Structures (Mouton, The Hague 1957)Google Scholar
  60. 14.60.
    E. Charniak: A maximum-entropy-inspired parser, Technical Report CS-99-12 (Brown University 1999)Google Scholar
  61. 14.61.
    F. Gaspari: Online MT Services and Real Users Needs: An Empirical Usability Evaluation (Springer, Berlin, Heidelberg 2004), pp 74–85Google Scholar
  62. 14.62.
    P. Jackson, I. Moulinier: Natural Language Processing for Online Applications: Text Retrieval, Extraction, and Categorization (John Benjamins, Amsterdam 2002)Google Scholar
  63. 14.63.
    M. Sahami, T.D. Heilman: A web-based kernel function for measuring the similarity of short text snippets, WWW ʼ06: Proc. 15th Int. Conf. World Wide Web (New York 2006) pp. 377–386Google Scholar
  64. 14.64.
    J. Burstein, M. Chodorow, C. Leacock: Automated essay evaluation: the criterion online writing service, AI Mag. 25(3), 27–36 (2004)Google Scholar
  65. 14.65.
    Zhi Biao Wu, Loke Soo Hsu, Chew Lim Tan: A survey of statistical approaches to natural language processing, Technical Report TRA4/92 (National University of Singapore 1992)Google Scholar
  66. 14.66.
    C. A. Thompson: A brief introduction to natural language processing for nonlinguists. In: Learning Language in Logic, Lecture Notes in Computer Science (LNCS) Ser., Vol. 1925, ed. by J. Cussens, S. Dzeroski (Springer, New York 2000) pp. 36–48Google Scholar
  67. 14.67.
    H. Havenstein: Spring comes to AI winter, Computerworld (2005), available at
  68. 14.68.
    B.G. Buchanan, E.H. Shortliffe (Eds.): Rule-Based Expert Systems: The MYCIN Experiments of the Stanford Heuristic Programming Project (Addison-Wesley, Reading 1984)Google Scholar
  69. 14.69.
    R.G. Smith, J.D. Baker: The dipmeter advisor system – a case study in commercial expert system development, Proc. Int. Joint Conf. Artif. Intell. (IJCAI) (1983) pp. 122–129Google Scholar
  70. 14.70.
    M. Stefik: Inferring DNA structures from segmentation data, Artif. Intell. 11(1/2), 85–114 (1978)CrossRefGoogle Scholar
  71. 14.71.
    J.P. McDermott: R1 (“XCON”) at age 12: Lessons from an elementary school achiever, Artif. Intell. 59(1/2), 241–247 (1993)CrossRefGoogle Scholar
  72. 14.72.
    G. Steele: Common Lisp: The Language, 2nd edn. (Digital, Woburn 1990)zbMATHGoogle Scholar
  73. 14.73.
    P. Graham: ANSI Common Lisp (Prentice Hall, Englewood Cliffs 1995)Google Scholar
  74. 14.74.
    P. Graham: Hackers and Painters: Big Ideas from the Computer Age (OʼReilly Media, Sebastopol 2004) pp. 165–180, also available at Google Scholar
  75. 14.75.
    N. Muscettola, P. Pandurang Nayak, B. Pell, B.C. Williams: Remote agent: To boldly go where no AI system has gone before, Artif. Intell. 103(1/2), 5–47 (1998)CrossRefzbMATHGoogle Scholar
  76. 14.76.
    W. Clocksin, C. Mellish: Programming in Prolog (Springer, Berlin, Heidelberg 1981)Google Scholar
  77. 14.77.
    E. Feigenbaum, P. McCorduck: The Fifth Generation: Artificial Intelligence and Japanʼs Computer Challenge to the World (Addison-Wesley Longman, Boston 1983)Google Scholar
  78. 14.78.
    D. Nau, J. Wilkenfeld (Ed): Proc. 1st Int. Conf. Comput. Cult. Dyn. (ICCCD-2007) (AAAI Press, Menlo Park 2007)Google Scholar
  79. 14.79.
    H. Liu, J. Salerno, M. Young (Ed): Proc. 1st Int. Workshop Soc. Comput. Behav. Model. Predict. (Springer, Berlin, Heidelberg 2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Department of Computer ScienceUniversity of MarylandCollege ParkUSA

Personalised recommendations