Advertisement

Communication in Automation, Including Networking and Wireless

Chapter
Part of the Springer Handbooks book series (SHB)

Abstract

An introduction to the fundamental issues and limitations of communication and networking in automation is given. Digital communication fundamentals are reviewed and networked control systems together with teleoperation are discussed. Issues in both wired and wireless networks are presented.

Keywords

Medium Access Control Channel Capacity Code Word Network Control System Quadrature Amplitude Modulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations

CAN

control area network

DP

decentralized periphery

HSI

human system interface

IP

inaction–penalty

IP

industrial protocol

IP

integer programming

IP

intellectual property

IP

internet protocol

LTI

linear time-invariant

MAC

medium access control

NCS

networked control system

PAM

physical asset management

PAM

pulse-amplitude modulation

PLC

programmable logic controller

PSK

phase-shift keying

QAM

quadrature amplitude modulation

SCADA

supervisory control and data acquisition

SCST

source-channel separation theorem

TCP

transmission control protocol

TDMA

time-division multiple access

TO

teleoperator

pdf

probability distribution function

References

  1. 13.1.
    R. Gallager: 6.45 Principles of Digital Communication – I (MIT, Cambridge 2002)Google Scholar
  2. 13.2.
    C.E. Shannon: A mathematical theory of communication, Bell Syst. Tech. J. 27, 379–423 (1948)zbMATHMathSciNetGoogle Scholar
  3. 13.3.
    S. Vembu, S. Verdu, Y. Steinberg: The source-channel separation theorem revisited, IEEE Trans. Inf. Theory 41(1), 44–54 (1995)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 13.4.
    M. Gasfpar, B. Rimoldi, M. Vetterli: To code, or not to code: lossy source-channel communication revisited, IEEE Trans. Inf. Theory 49(5), 1147–1158 (2003)CrossRefGoogle Scholar
  5. 13.5.
    H. El Gamal: On the scaling laws of dense wireless sensor networks: the data gathering channel, IEEE Trans. Inf. Theory 51(3), 1229–1234 (2005)CrossRefGoogle Scholar
  6. 13.6.
    J. Proakis: Digital Communications, 4th edn. (McGraw-Hill, New York 2000)Google Scholar
  7. 13.7.
    T.M. Cover, J.A. Thomas: Elements of Information Theory (Wiley, New York 1991)CrossRefzbMATHGoogle Scholar
  8. 13.8.
    M. Xie, M. Haenggi: Delay-Reliability Tradeoffs in Wireless Networked Control Systems, Lecture Notes in Control and Information Sciences (Springer, New York 2005)Google Scholar
  9. 13.9.
    K.K. Lee, S.T. Chanson: Packet loss probability for bursty wireless real-time traffic through delay model, IEEE Trans. Veh. Technol. 53(3), 929–938 (2004)CrossRefGoogle Scholar
  10. 13.10.
    J.R. Moyne, D.M. Tilbury: The emergence of industrial control networks for manufacturing control, diagnostics, and safety data, Proc. IEEE 95(1), 29–47 (2007)CrossRefGoogle Scholar
  11. 13.11.
    M. Ergen, D. Lee, R. Sengupta, P. Varaiya: WTRP – wireless token ring protocol, IEEE Trans. Veh. Technol. 53(6), 1863–1881 (2004)CrossRefGoogle Scholar
  12. 13.12.
    P.J. Antsaklis, J. Baillieul: Special issue: technology of networked control systems, Proc. IEEE 95(1), 5–8 (2007)CrossRefGoogle Scholar
  13. 13.13.
    A. Shajii, N. Kottenstette, J. Ambrosina: Apparatus and method for mass flow controller with network access to diagnostics, US Patent 6810308 (2004)Google Scholar
  14. 13.14.
    L.A. Montestruque, P.J. Antsaklis: On the model-based control of networked systems, Automatica 39(10), 1837–1843 (2003)CrossRefMathSciNetGoogle Scholar
  15. 13.15.
    L.A. Montestruque, P. Antsaklis: Stability of model-based networked control systems with time-varying transmission times, IEEE Trans. Autom. Control 49(9), 1562–1572 (2004)CrossRefMathSciNetGoogle Scholar
  16. 13.16.
    T. Estrada, H. Lin, P.J. Antsaklis: Model-based control with intermittent feedback, Proc. 14th Mediterr. Conf. Control Autom. (Ancona 2006) pp. 1–6Google Scholar
  17. 13.17.
    B. Recht, R. DʼAndrea: Distributed control of systems over discrete groups, IEEE Trans. Autom. Control 49(9), 1446–1452 (2004)CrossRefMathSciNetGoogle Scholar
  18. 13.18.
    M. Kuschel, P. Kremer, S. Hirche, M. Buss: Lossy data reduction methods for haptic telepresence systems, Proc. Conf. Int. Robot. Autom., IEEE Cat. No. 06CH37729D (IEEE, Orlando 2006) pp. 2933–2938Google Scholar
  19. 13.19.
    G. Niemeyer, J.-J.E. Slotine: Telemanipulation with time delays, Int. J. Robot. Res. 23(9), 873–890 (2004)CrossRefGoogle Scholar
  20. 13.20.
    P.F. Hokayem, M.W. Spong: Bilateral teleoperation: an historical survey, Automatica 42(12), 2035–2057 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  21. 13.21.
    N. Kottenstette, P.J. Antsaklis: Stable digital control networks for continuous passive plants subject to delays and data dropouts, 46th IEEE Conf. Decis. Control (CDC) (IEEE, 2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Institute for Software Integrated SystemsVanderbilt UniversityNashvilleUSA
  2. 2.Department of Electrical EngineeringUniversity of Notre DameNotre DameUSA

Personalised recommendations