Advertisement

Application of Hierarchical Decomposition: Preconditioners and Error Estimates for Conforming and Nonconforming FEM

  • Radim Blaheta
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4818)

Abstract

A successive refinement of a finite element grid provides a sequence of nested grids and hierarchy of nested finite element spaces as well as a natural hierarchical decomposition of these spaces. In the case of numerical solution of elliptic boundary value problems by the conforming FEM, this sequence can be used for building both multilevel preconditioners and error estimates. For a nonconforming FEM, multilevel preconditioners and error estimates can be introduced by means of a hierarchy, which is constructed algebraically starting from the finest discretization.

Keywords

Hierarchical Decomposition Nest Grid Numerical Linear Algebra Hierarchical Basis Nonconforming Finite Element 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Axelsson, O., Blaheta, R.: Two simple derivations of universal bounds for the C.B.S. inequality constant. Applications of Mathematics 49, 57–72 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Axelsson, O., Gustafsson, I.: Preconditioning and two-level multigrid methods of arbitrary degree of approximations. Mathematics of Computation 40, 219–242 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Axelsson, O., Padiy, A.: On the additive version of the algebraic multilevel iteration method for anisotropic elliptic problems. SIAM Journal on Scientific Computing 20(5), 1807–1830 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Axelsson, O., Vassilevski, P.: Algebraic Multilevel Preconditioning Methods I. Numerische Mathematik 56, 157–177 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Axelsson, O., Vassilevski, P.: Algebraic Multilevel Preconditioning Methods II. SIAM Journal on Numerical Analysis 27, 1569–1590 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Axelsson, O., Vassilevski, P.: A black box generalized conjugate gradient solver with inner iterations and variable-step preconditioning. SIAM Journal on Matrix Analysis and Applications 12, 625–644 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Bank, R.: Hierarchical bases and the finite element method. Acta Numerica 5, 1–43 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Blaheta, R., Margenov, S., Neytcheva, M.: Uniform estimate of the constant in the strengthened CBS inequality for anisotropic non-conforming FEM systems. Numerical Linear Algebra with Applications 11, 309–326 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Blaheta, R., Margenov, S., Neytcheva, M.: Robust optimal multilevel preconditioners for nonconforming FEM systems. Numerical Linear Algebra with Applications 12, 495–514 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Brenner, S., Carstensen, C.: Finite element methods. In: Stein, E., de Borst, R., Hughes, T.J.R. (eds.) Encyclopedia of Computational Mechanics, pp. 73–118. J. Wiley, Chichester (2004)Google Scholar
  11. 11.
    Brenner, S., Scott, L.: The Mathematical Theory of Finite Element Methods. Springer, Heidelberg (2002)CrossRefzbMATHGoogle Scholar
  12. 12.
    Kraus, J., Margenov, S., Synka, J.: On the multilevel preconditioning of Crouzeix-Raviart elliptic problems. Numerical Linear Algebra with Applications (to appear)Google Scholar
  13. 13.
    Margenov, S., Synka, J.: Generalized aggregation-based multilevel preconditioning of Crouzeix-Raviart FE elliptic problems. In: Boyanov, T., et al. (eds.) NMA 2006. LNCS, vol. 4310, pp. 91–99. Springer, Heidelberg (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Radim Blaheta
    • 1
  1. 1.Department of Applied MathematicsInstitute of Geonics AS CROstrava-PorubaCzech Republic

Personalised recommendations