Modelling Evaluation of Emission Scenario Impact in Northern Italy

  • Claudio Carnevale
  • Giovanna Finzi
  • Enrico Pisoni
  • Marialuisa Volta
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4818)


In this work, the multiphase model TCAM has been applied to evaluate the impact of three different emission scenarios on PM10 concentrations in northern Italy. This domain, due to high industrial and residential site, to a close road net and to frequently stagnating meteorological conditions, is often affected by severe PM10 levels, far from the European standard laws. The impact evaluation has been performed in terms of both yearly mean value and 50 μg/m 3 exceedance days in 9 points of the domain, chosen to be representative for the chemical and meteorological regimes of the domain. The results show that all the three emission reduction scenarios improve air quality all over the domain, and in particular in the area with higher emission density.


Emission Scenario Atmospheric Environment Cloud Droplet Multiphase Model Aerosol Module 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Carnevale, C., Finzi, G., Volta, M.: Design and validation of a multiphase 3D model to simulate tropospheric pollution. In: Proc. 44th IEEE Conference on Decision and Control and European Control Conference, ECC-CDC (2005)Google Scholar
  2. 2.
    Volta, M., Finzi, G.: GAMES, a comprehensive Gas Aerosol Modelling Evaluation System. Environmental Modelling and Software 21, 578–594 (2006)CrossRefGoogle Scholar
  3. 3.
    Carnevale, C., et al.: POEM-PM: An emission modelling for secondary pollution control scenarios. Environmental Modelling and Software 21, 320–329 (2006)Google Scholar
  4. 4.
    Scire, J.S., Insley, E.M., Yamartino, R.J.: Model formulation and user’s guide for the CALMET meteorological model. Technical Report, California Air Resources Board, Sacramento, CA, A025-1 (1990)Google Scholar
  5. 5.
    Cuvelier, C., et al.: Citydelta: A model intercomparison study to explore the impact of emission reductions in european cities in 2010. Atmospheric Environment 41(1), 189–207 (2007)CrossRefGoogle Scholar
  6. 6.
    Marchuk, G.I.: Methods of Numerical Mathematics. Springer, New York (1975)CrossRefzbMATHGoogle Scholar
  7. 7.
    Yamartino, R.J., et al.: The CALGRID mesoscale photochemical grid model — I. Model formulation. Atmospheric Environment 26A(8), 1493–1512 (1992)CrossRefGoogle Scholar
  8. 8.
    Seinfeld, J.H., Pandis, S.N.: Atmospheric chemistry and physics. John Wiley & Sons, Chichester (1998)Google Scholar
  9. 9.
    Pepper, D.W., Kern, C.D., Long, P.E.: Modelling the dispersion of atmospheric pollution using cubic splines and chapeau functions. Atmospheric Environment 13, 223–237 (1979)CrossRefGoogle Scholar
  10. 10.
    Forester, C.K.: Higher Order Monotonic Convection Difference Schemes. Journal of Computational Physics 23, 1–22 (1977)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Gery, M.W., Whitten, G.Z., Killus, J.P.: A Photochemical Kinetics Mechanism for Urban and Regional-Scale Computering Modeling. Journal of Geophysical Research 94, 12925–12956 (1989)CrossRefGoogle Scholar
  12. 12.
    Carter, W.P.L.: A detailed mechanism for the gas-phase atmospheric reactions of organic compounds. Atmospheric Environment 24A, 481–518 (1990)CrossRefGoogle Scholar
  13. 13.
    Carter, W.P.L., Luo, D.I.L., Malkina, I.L.: Environmental chamber studies for development of an updated photochemical mechanism for VOC reactivity assessment. Technical report, California Air Resources Board, Sacramento (CA) (1997)Google Scholar
  14. 14.
    Carter, W.P.L.: Documentation of the SAPRC-99 Chemical Mechanism for VOC Reactivity Assessment. Contract 92–329, 95–308, California Air Resources Board (2000)Google Scholar
  15. 15.
    Wexler, A.S., Seinfeld, J.H.: Second-Generation Inorganic Aerosol Model. Atmospheric Environment 25A, 2, 731–732, 748 (1991)Google Scholar
  16. 16.
    Chock, D.P., Winkler, S.L., Sun, P.: A Comparison of Stiff Chemistry Solvers for Air Quality Modeling. Air & Waste Management Association 87th Annual Meeting (1994)Google Scholar
  17. 17.
    Hindmarsh, A.C.: LSODE and LSODEI, Two New Initial Value Ordinary Differential Equation Solvers. ACM-SIGNUM Newsletter 15(4), 10–11 (1975)CrossRefGoogle Scholar
  18. 18.
    Wille, D.R.: New Stepsize Estimators for Linear Multistep Methods. Numerical Analysis Report 247, inst-MCCM (1994)Google Scholar
  19. 19.
    Jaecker-Voirol, A., Mirabel, P.: Heteromolecular nucleation in the sulfuric acid-water system. Atmospheric Environment 23, 2053–2057 (1989)CrossRefGoogle Scholar
  20. 20.
    Kim, Y.P., Seinfeld, J.H., Saxena, P.: Atmospheric Gas Aerosol Equilibrium I: Termodynamic Model. Aerosol Science and Technology 19, 157–187 (1993)CrossRefGoogle Scholar
  21. 21.
    Wexler, A.S., Lurmann, F.W., Seinfeld, J.H.: Modelling Urban and Regional Aerosols-I. Model Development. Atmospheric Environment 28(3), 531–546 (1994)CrossRefGoogle Scholar
  22. 22.
    Vestreng, V., Adams, M., Goodwin, J.: Inventory review 2004. emission data reportedd to CRLTAP and under the NEC Directive. Technical report, EMEP/EEA Joint Review Report (2004)Google Scholar
  23. 23.
    Carnevale, C., Volta, M.: Chemical and size characterization of PM road traffic emission: profile estimation for multiphase models. Journal of Aerosol Science — European Aerosol Conference 2, 1349–1350 (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Claudio Carnevale
    • 1
  • Giovanna Finzi
    • 1
  • Enrico Pisoni
    • 1
  • Marialuisa Volta
    • 1
  1. 1.Department of Electronics for AutomationUniversity of BresciaBresciaItaly

Personalised recommendations