Advertisement

On State Estimation Approaches for Uncertain Dynamical Systems with Quadratic Nonlinearity: Theory and Computer Simulations

  • Tatiana F. Filippova
  • Elena V. Berezina
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4818)

Abstract

The paper deals with the problems of state estimation for nonlinear dynamical control system described by differential equations with unknown but bounded initial condition. The nonlinear function in the right-hand part of a differential system is assumed to be of quadratic type with respect to the state variable. Basing on the well-known results of ellipsoidal calculus developed for linear uncertain systems we present the modified state estimation approaches which use the special structure of the dynamical system.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chahma, I.A.: Set-valued discrete approximation of state-constrained differential inclusions. Bayreuth. Math. Schr. 67, 3–162 (2003)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Chernousko, F.L.: State Estimation for Dynamic Systems. Nauka, Moscow (1988)Google Scholar
  3. 3.
    Chernousko, F.L., Ovseevich, A.I.: Properties of the optimal ellipsoids approximating the reachable sets of uncertain systems. J. Optimization Theory Appl. 120(2), 223–246 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Dontchev, A.L., Farkhi, E.M.: Error estimates for discretized differential inclusions. Computing 41(4), 349–358 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Dontchev, A.L., Lempio, F.: Difference methods for differential inclusions: a survey. SIAM Review 34, 263–294 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Filippov, A.F.: Differential Equations with Discontinuous Right-hand Side. Nauka, Moscow (1985)zbMATHGoogle Scholar
  7. 7.
    Filippova, T.F.: Sensitivity Problems for Impulsive Differential Inclusions. In: Proc. of the 6th WSEAS Conference on Applied Mathematics, Corfu, Greece (2004)Google Scholar
  8. 8.
    Häckl, G.: Reachable sets, control sets and their computation. Augsburger Mathematisch-Naturwissenschaftliche Schriften. PhD Thesis, University of Augsburg, Augsburg, 7 (1996)Google Scholar
  9. 9.
    Krasovskii, N.N., Subbotin, A.I.: Positional Differential Games. Nauka, Moscow (1974)zbMATHGoogle Scholar
  10. 10.
    Kurzhanski, A.B.: Control and Observation under Conditions of Uncertainty. Nauka, Moscow (1977)Google Scholar
  11. 11.
    Kurzhanski, A.B., Filippova, T.F.: On the theory of trajectory tubes — a mathematical formalism for uncertain dynamics, viability and control. In: Kurzhanski, A.B. (ed.) Advances in Nonlinear Dynamics and Control: a Report from Russia. Progress in Systems and Control Theory, vol. 17, pp. 122–188. Birkhauser, Boston (1993)CrossRefGoogle Scholar
  12. 12.
    Kurzhanski, A.B., Valyi, I.: Ellipsoidal Calculus for Estimation and Control. Birkhauser, Boston (1997)CrossRefzbMATHGoogle Scholar
  13. 13.
    Kurzhanski, A.B., Veliov, V.M. (eds.): Set-valued Analysis and Differential Inclusions. Progress in Systems and Control Theory, vol. 16. Birkhauser, Boston (1990)Google Scholar
  14. 14.
    Panasyuk, A.I.: Equations of attainable set dynamics. Part 1: Integral funnel equations. J. Optimiz. Theory Appl. 64(2), 349–366 (1990)CrossRefzbMATHGoogle Scholar
  15. 15.
    Veliov, V.M.: Second order discrete approximations to strongly convex differential inclusions. Systems and Control Letters 13, 263–269 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Veliov, V.: Second-order discrete approximation to linear differential inclusions. SIAM J. Numer. Anal. 29(2), 439–451 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Wolenski, P.R.: The exponential formula for the reachable set of a Lipschitz differential inclusion. SIAM J. Control Optimization 28(5), 1148–1161 (1990)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Tatiana F. Filippova
    • 1
  • Elena V. Berezina
    • 1
  1. 1.Institute of Mathematics and MechanicsRussian Academy of SciencesEkaterinburgRussia

Personalised recommendations