Advertisement

Multicriteria Optimal Control and Vectorial Hamilton-Jacobi Equation

  • Nathalie Caroff
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4818)

Abstract

In this paper we investigate a multicriteria optimal control problem associated to a preference relation based on the lexicographic order. We extend different notions of non-smooth analysis and control and show that the vector Value function is the unique vector lower semicontinuous solution to a suitable system of Hamilton-Jacobi equations in the sense of contingent solution or equivalently in the sense of extended viscosity solution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aubin, J.P., Cellina, A.: Differential Inclusions. Springer, Berlin (1984)CrossRefzbMATHGoogle Scholar
  2. 2.
    Aubin, J.P., Frankowska, H.: Set-valued analysis. Birkhaüser, Berlin (1991)zbMATHGoogle Scholar
  3. 3.
    Barron, E.N., Jensen, R.: Semicontinuous viscosity solutions for Hamilton-Jacobi equations with convex Hamiltonians. Partial Differential Equations 15, 1713–1742 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Borwein, J.M., Nieuwenhuis, J.W.: Two kind of Normality in vector optimization. Mathematical Programming 28, 185–191 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Clarke, F.H.: Optimization and non smooth analysis. Wiley-Interscience, New York (1983)Google Scholar
  6. 6.
    Crandall, M.G., Lyons, P.L.: Viscosity solutions of Hamilton-Jacobi equations. Transactions of American Mathematical Society 277, 1–42 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Frankowska, H.: Lower semicontinuous solutions of Hamilton-Jacobi-Bellman equations. SIAM J. Control Optim. 31, 257–272 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Imbert, C., Volle, M.: On vectorial Hamilton-Jacobi equations. Well-posedness in optimization and related topics. Control Cybernet 31, 493–506 (2002)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Volle, M.: Duality Principle for optimization problems Dealing with the Difference of vector-valued Convex Mappings. J. Optim. Theory Appl. 114, 223–241 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Zhu, Q.J.: Hamiltonian necessary conditions for a multiobjective optimal control problem with endpoint constraints. SIAM J. Control Optim. 39, 97–112 (2000)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Nathalie Caroff
    • 1
  1. 1.Laboratoire MANOUniversité de PerpignanPerpignan cedexFrance

Personalised recommendations