Skip to main content

Parallelization of Advection-Diffusion-Chemistry Modules

  • Conference paper
Large-Scale Scientific Computing (LSSC 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4818))

Included in the following conference series:

  • 1392 Accesses

Abstract

An advection-diffusion-chemistry module of a large-scale air pollution model is split into two parts: (a) advection-diffusion part and (b) chemistry part. A simple sequential splitting is used. This means that at each time-step first the advection-diffusion part is treated and after that the chemical part is handled. A discretization technique based on central differences followed by Crank-Nicolson time-stepping is used in the advection-diffusion part. The non-linear chemical reactions are treated by the robust Backward Euler Formula. The performance of the combined numerical method (splitting procedure + numerical algorithms used in the advection-diffusion part and in the chemical part) is studied in connection with six test-problems. We are interested in both the accuracy of the results and the efficiency of the parallel computations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexandrov, V., et al.: Parallel runs of a large air pollution model on a grid of Sun computers. Mathematics and Computers in Simulation 65, 557–577 (2004)

    Article  MathSciNet  Google Scholar 

  2. Anderson, E., et al.: LAPACK: Users’ Guide. SIAM, Philadelphia (1992)

    MATH  Google Scholar 

  3. Crowley, W.P.: Numerical advection experiments. Monthly Weather Review 96, 1–11 (1968)

    Article  Google Scholar 

  4. Demmel, J.W., et al.: A supernodal approach to sparse partial pivoting. SIAM Journal of Matrix Analysis and Applications 20, 720–755 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  5. Demmel, J.W., Gilbert, J.R., Li, X.S.: An asynchronous parallel supernodal algorithm for sparse Gaussian elimination. SIAM Journal of Matrix Analysis and Applications 20, 915–952 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  6. Duff, I.S., Erisman, A.M., Reid, J.K.: Direct Methods for Sparse Matrices. Oxford University Press, Oxford-London (1986)

    MATH  Google Scholar 

  7. Golub, G.H., Ortega, J.M.: Scientific Computing and Differential Equations. Academic Press, Boston-San Diego-New York-London-Sydney-Tokyo-Toronto (1992)

    MATH  Google Scholar 

  8. Golub, G.H., Van Loan, C.F.: Matrix Computations, Maryland. Johns Hopkins University Press, Baltimore (1983)

    MATH  Google Scholar 

  9. Hov, Ø., et al.: Comparison of numerical techniques for use in air pollution models with non-linear chemical reaction. Atmospheric Environment 23, 967–983 (1988)

    Article  Google Scholar 

  10. Molenkampf, C.R.: Accuracy of finite-difference methods applied to the advection equation. Journal of Applied Meteorology 7, 160–167 (1968)

    Article  Google Scholar 

  11. Strikwerda, J.C.: Finite difference schemes and partial differential equations. Second Edition. SIAM, Philadelphia (2004)

    Book  MATH  Google Scholar 

  12. Zlatev, Z.: Computational methods for general sparse matrices. Kluwer Academic Publishers, Dordrecht-Boston-London (1991)

    Book  MATH  Google Scholar 

  13. Zlatev, Z.: Computer Treatment of Large Air Pollution Models. In: Environmental Science and Technology Science, vol. 2, Kluwer Academic Publishers, Dordrecht-Boston-London (1995)

    Google Scholar 

  14. Zlatev, Z., Dimov, I.: Computational and Environmental Challenges in Environmental Modelling. In: Studies in Computational Mathematics, Amsterdam-Boston-Heidelberg-London-New York-Oxford-Paris-San Diego-San Francisco-Singapore-Sydney-Tokyo, vol. 13, Elsevier, Amsterdam (2006)

    Google Scholar 

  15. Danish Centre for Scientific Computing at the Technical University of Denmark, Sun High Performance Computing Systems (2002), http://www.hpc.dtu.dk

  16. Open MP tools (1999), http://www.openmp.org

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Faragó, I., Georgiev, K., Zlatev, Z. (2008). Parallelization of Advection-Diffusion-Chemistry Modules. In: Lirkov, I., Margenov, S., Waśniewski, J. (eds) Large-Scale Scientific Computing. LSSC 2007. Lecture Notes in Computer Science, vol 4818. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78827-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-78827-0_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-78825-6

  • Online ISBN: 978-3-540-78827-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics