Advertisement

DNS and LES of Scalar Transport in a Turbulent Plane Channel Flow at Low Reynolds Number

  • Jordan A. Denev
  • Jochen Fröhlich
  • Henning Bockhorn
  • Florian Schwertfirm
  • Michael Manhart
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4818)

Abstract

The paper reports on DNS and LES of plane channel flow at Re τ = 180 and compares these to a DNS with a higher order convection scheme. For LES different subgrid-scale models like the Smagorinsky, the Dynamic Smagorinsky and the Dynamic Mixed Model were used with the grid being locally refined in the near-wall region. The mixing of a passive scalar has been simulated with two convection schemes, central differencing and HLPA. The latter exhibits numerical diffusion and the results with the central scheme are clearly superior. LES with this scheme reproduced the budget of the scalar variance equation reasonably well.

Keywords

Large Eddy Simulation Direct Numerical Simulation Convection Scheme Scalar Transport Smagorinsky Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Calmet, I., Magnaudet, J.: Large-eddy simulation of high-schmidt number mass transfer in a turbulent channel flow. Phys. Fluids 9(2), 438–455 (1997)CrossRefGoogle Scholar
  2. 2.
    Fröhlich, J., et al.: On the impact of tangential grid refinement on subgrid-scale modeling in large eddy simulation. In: Boyanov, T., et al. (eds.) NMA 2006. LNCS, vol. 4310, pp. 550–557. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  3. 3.
    Hinterberger, C.: Dreidimensionale und tiefengemittelte Large–Eddy–Simulation von Flachwasserströmungen. PhD thesis, Institute for Hydromechanics, University of Karlsruhe (2004)Google Scholar
  4. 4.
    Kim, J., Moin, P., Moser, R.: Turbulence statistics in fully developed channel flow at low Reynolds number. J. Fluid Mech. 177, 133–166 (1987)CrossRefzbMATHGoogle Scholar
  5. 5.
    Manhart, M.: A zonal grid algorithm for DNS of turbulent boundary layers. Computers and Fluids 33(3), 435–461 (2004)CrossRefzbMATHGoogle Scholar
  6. 6.
    Sagaut, P.: Large Eddy Simulation for Incompressible Flows: An Introduction, 2nd edn. Springer, Berlin (2002)CrossRefzbMATHGoogle Scholar
  7. 7.
    Schwertfirm, F., Manhart, M.: ADM Modelling for Semi-Direct Numerical Simulation of Turbulent Mixing and Mass Transport. In: Humphrey, J.A.C., et al. (eds.) Fourth International Symposium. On Turbulence and Shear Flow Phenomena, vol. 2, pp. 823–828. Williamsburg, Virginia (2005)Google Scholar
  8. 8.
    Schwertfirm, F., Manhart, M.: DNS of passive scalar transport in turbulent channel flow at high Schmidt numbers. In: Hanjalic, K., Nagano, Y., Jakrilic, S. (eds.) Turbulence, Heat and Mass Transfer 5, Dubrovnik, Coratia, pp. 289–292 (2006)Google Scholar
  9. 9.
    Zhu, J.: A low-diffusive and oscillation-free convection scheme. Communications in applied numerical methods 7, 225–232 (1991)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Jordan A. Denev
    • 1
  • Jochen Fröhlich
    • 1
  • Henning Bockhorn
    • 1
  • Florian Schwertfirm
    • 2
  • Michael Manhart
    • 2
  1. 1.Institute for Technical Chemistry and Polymer ChemistryUniversity of KarlsruheKarlsruheGermany
  2. 2.Department of HydromechanicsTechnical University of MunichMunichGermany

Personalised recommendations