Advertisement

Qualitatively Correct Discretizations in an Air Pollution Model

  • Krassimir Georgiev
  • M. Mincsovics
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4818)

Abstract

We deal with one subproblem of an air pollution model, the horizontal diffusion, which can be mathematically described by a linear partial differential equation of parabolic type. With different space discretization schemes (like a FDM, FEM), and using the θ-method for time discretization we get a one-step algebraic iteration as a numerical model. The preservation of characteristic qualitative properties of different phenomena is an increasingly important requirement in the construction of reliable numerical models. For that reason we analyze the connection between the shape and time-monotonicity in the continuous and the numerical model, and we give the necessary and sufficient condition to fulfil this property.

Keywords

Discrete Model Time Level Discrete Maximum Principle Matrix Splitting Regular Splitting 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Berman, A., Plemmons, R.J.: Nonnegative Matrices in the Mathematical Sciences. Academic Press, New York (1979)zbMATHGoogle Scholar
  2. 2.
    Faragó, I., Pfeil, T.: Preserving concavity in initial-boundary value problems of parabolic type and its numerical solution. Periodica Mathematica Hungarica 30, 135–139 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Faragó, I., et al.: A hővezetési egyenlet és numerikus megoldásának kvalitatív tulajdonságai I. Az elsőfokú közelítések nemnegativitása. Alkalmazott Matematikai Lapok 17, 101–121 (1993)MathSciNetGoogle Scholar
  4. 4.
    Faragó, I., Horváth, R.: A Review of Reliable Numerical Models for Three-Dimensional Linear Parabolic Problems. Int. J. Numer. Meth. Engng. 70, 25–45 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Faragó, I., Horváth, R., Korotov, S.: Discrete Maximum Principle for Linear Parabolic Problems Solved on Hybrid Meshes. Appl. Num. Math. 53, 249–264 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Marchuk, G.I.: Mathematical modeling for the problem of the environment. Studies in Mathematics and Applications, vol. 16. North-Holland, Amsterdam (1985)Google Scholar
  7. 7.
    Marek, I., Szyld, D.B.: Comparison theorems for weak splittings of bounded operators. Numer. Math. 58, 389–397 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    McRae, G.J., Goodin, W.R., Seinfeld, J.H.: Numerical solution of the atmospheric diffusion equations for chemically reacting flows. Journal of Computational Physics 45, 1–42 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Mincsovics, M.: Qualitative analysis of the one-step iterative methods and consistent matrix splittings. Special Issue of Computers and Mathematics with Applications (accepted)Google Scholar
  10. 10.
    Verwer, J.G., Hundsdorfer, W., Blom, J.G.: Numerical Time Integration for Air Pollution Models, Report of CWI, MAS-R9825 (1982)Google Scholar
  11. 11.
    Zlatev, Z.: Computer Treatment of Large Air Pollution Models. Kluwer Academic Publishers, Dordrecht-Boston-London (1995)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Krassimir Georgiev
    • 1
  • M. Mincsovics
    • 2
  1. 1.Institute for Parallel ProcessingBulgarian Academy of SciencesSofiaBulgaria
  2. 2.Institute of MathematicsEötvös Loránd UniversityBudapestHungary

Personalised recommendations