Advertisement

A Penalty-Projection Method Using Staggered Grids for Incompressible Flows

  • C. Févrière
  • Ph. Angot
  • P. Poullet
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4818)

Abstract

We deal with the time-dependent Navier-Stokes equations with Dirichlet boundary conditions on all the domain or, on a part of the domain and open boundary conditions on the other part. It is shown numerically that a staggered mesh with penalty-projection method yields reasonable good results for solving the above mentioned problem. Similarly to the results obtained recently by other scientists using finite element method (FEM) [1] and [2] (with the rotational pressure-correction method for the latter), we confirm that the penalty-projection scheme with spatial discretization of the Marker And Cell method (MAC) [3] is compatible with our problem.

Keywords

Dirichlet Boundary Condition Projection Method Open Boundary Condition Augmented Lagrangian Method Pressure Error 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Jobelin, M., et al.: A Finite Element penalty-projection method for incompressible flows. J. Comput. Phys. 217(2), 502–518 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Guermond, J.L., Minev, P., Shen, J.: Error analysis of pressure-correction schemes for the time-dependent Stokes equations with open boundary conditions. SIAM J. Numer. Anal. 43(1), 239–258 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Harlow, F., Welch, J.: Numerical calculation of time-dependent viscous incompressible flow of fluid with free surfaces. J. E. Phys. Fluids 8, 2181–2189 (1965)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Chorin, A.J.: Numerical solution of the Navier-Stokes equations. Math. Comput. 22, 745–762 (1968)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Temam, R.: Sur l’approximation de la solution des équations de Navier-Stokes par la méthode à pas fractionnaires (II). Arch. for Rat. Mech. Anal. 33, 377–385 (1969)CrossRefzbMATHGoogle Scholar
  6. 6.
    Shen, J.: On error estimates of projection methods for Navier-Stokes equations: Second-order schemes. Math. Comput. 65(215), 1039–1065 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Fortin, M., Glowinski, R.: Augmented Lagrangian Methods: Applications to the numerical solution of boundary value problems. North-Holland, Amsterdam (1983)zbMATHGoogle Scholar
  8. 8.
    Temam, R.: Navier-Stokes Equations, AMS Chelsea Publishing (2001)Google Scholar
  9. 9.
    Shen, J.: On error estimates of some higher order projection and penalty-projection methods for Navier-Stokes equations. Numer. Math. 62, 49–73 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Van Kan, J.: A second-order accurate pressure-correction scheme for viscous incompressible flow. SIAM J. on Scient. Stat. Comput. 7(3), 870–891 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Guermond, J.L., Shen, J.: On the error estimates for the rotational pressure-correction projection methods. Math. Comput. 73(248), 1719–1737 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Févrière, C. et al.: An accurate projection method for incompressible flows, An Int. Conf. of the Carribbean Academy of Science, Le Gosier (2006)Google Scholar
  13. 13.
    Guermond, J.L., Minev, P., Shen, J.: An overview of projection methods for incompressible flows. Comput. Meth. Appl. Mech. Engrg. 195(44–47), 6011–6045 (2006)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • C. Févrière
    • 1
  • Ph. Angot
    • 2
  • P. Poullet
    • 1
  1. 1.Groupe de Recherche en Info. et Math. Appli. des Antilles et de la GuyaneUniversité des Antilles et de la GuyanePointe-à-PitreFrance
  2. 2.Laboratoire d’Analyse Topologie et ProbabilitésUniversité de ProvenceMarseille Cédex 13France

Personalised recommendations