Skip to main content

Identifying the Stationary Viscous Flows Around a Circular Cylinder at High Reynolds Numbers

  • Conference paper
Book cover Large-Scale Scientific Computing (LSSC 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4818))

Included in the following conference series:

Abstract

We propose an approach to identifying the solutions of the steady incompressible Navier-Stokes equations for high Reynolds numbers. These cannot be obtained as initial-value problems for the unsteady system because of the loss of stability of the latter. Our approach consists in replacing the original steady-state problem for the Navier-Stokes equations by a boundary value problem for the Euler-Lagrange equations for minimization of the quadratic functional of the original equations. This technique is called Method of Variational Imbedding (MVI) and in this case it leads to a system of higher-order partial differential equations, which is solved by means of an operator-splitting method. As a featuring example we consider the classical flow around a circular cylinder which is known to lose stability as early as for Re= 40. We find a stationary solution with recirculation zone for Reynolds numbers as large as Re= 200. Thus, new information about the possible hybrid flow regimes is obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Christov, C.I.: A method for identification of homoclinic trajectories. In: Proc. 14th Spring Conf. Union of Bulg, Mathematicians, Sunny Beach, pp. 571–577 (1985)

    Google Scholar 

  2. Christov, C.I., Marinova, R.S.: Numerical investigation of high-Re stationary viscous flow around circular cylinder as inverse problem. Bulg. J. Meteorology Hydrology 5(3–4), 105–118 (1994)

    Google Scholar 

  3. Christov, C.I., Marinova, R.S.: Implicit scheme for Navier-Stokes equations in primitive variables via vectorial operator splitting. In: Griebel, M., et al. (eds.) Notes on Num. Fluid Mech., Vieweg, Germany, vol. 62, pp. 251–259 (1997)

    Google Scholar 

  4. Christov, C.I., Marinova, R.S.: Numerical solutions for steady flow past a circular cylinder via method of variational imbedding. Annuaire de l’Universite de Sofia ’St. Kl. Ohridski’ 90, 177–189 (1998)

    MathSciNet  MATH  Google Scholar 

  5. Dennis, S.C.R., Gau–Zu, C.: Numerical solutions for steady flow past a circular cylinder at Reynolds numbers up to 100. J. Fluid Mech. 42(3), 471–489 (1970)

    Article  MATH  Google Scholar 

  6. Douglas, J., Rachford, H.H.: On the numerical solution of heat conduction problems in two and three space variables. Trans, Amer. Math. Soc. 82, 421–439 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  7. Fornberg, B.: Steady flow past a circular cylinder up to Reynolds number 600. J. Comput. Phys. 61, 297–320 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  8. Fornberg, B.: Steady incompressible flow past a row of circular cylinders. J. Fluid Mech. 225, 655–671 (1991)

    Article  MATH  Google Scholar 

  9. Karniadakis, G.E., Triantafyllou, G.S.: Three-dimensional dynamics and transition to turbulence in the wake of bluff objects. J. of Fluid Mech. 238, 1–30 (1992)

    Article  MATH  Google Scholar 

  10. Mallison, G.D., de Vahl Davis, G.: The method of false transients for the solution of coupled elliptic equations. J. Comp. Phys. 12, 435–461 (1973)

    Article  MATH  Google Scholar 

  11. Marinova, R.S., Christov, C.I., Marinov, T.T.: A fully coupled solver for incompressible Navier-Stokes equations using coordinate operator splitting. Int. J. Comp. Fluid Dynamics 17(5), 371–385 (2003)

    Article  MATH  Google Scholar 

  12. Peregrine, D.H.: A note on steady high-Reynolds-number flow about a circular cylinder. J. Fluid Mech. 157, 493–500 (1985)

    Article  Google Scholar 

  13. Smagulov, S., Christov, C.I.: An iterationless implementation of boundary condition for vorticity function (preprint). Inst. Theor. Appl. Mech., Russian Acad. Sci., Novosibirsk 20 (1980) (in Russian)

    Google Scholar 

  14. Smith, F.T.: A structure for laminar flow past a bluff body at high Reynolds number. J. Fluid Mech. 155, 175–191 (1985)

    Article  MATH  Google Scholar 

  15. Yanenko, N.N.: Method of Fractional Steps. Gordon and Breach, London (1971)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Christov, C.I., Marinova, R.S., Marinov, T.T. (2008). Identifying the Stationary Viscous Flows Around a Circular Cylinder at High Reynolds Numbers. In: Lirkov, I., Margenov, S., Waśniewski, J. (eds) Large-Scale Scientific Computing. LSSC 2007. Lecture Notes in Computer Science, vol 4818. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78827-0_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-78827-0_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-78825-6

  • Online ISBN: 978-3-540-78827-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics