Advertisement

Monte Carlo Simulation of GaN Diode Including Intercarrier Interactions

  • A. Ashok
  • D. Vasileska
  • O. Hartin
  • S. M. Goodnick
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4818)

Abstract

Gallium Nitride (GaN) is becoming increasingly more attractive for a wide range of applications, such as optoelectronics, wireless communication, automotive and power electronics. Switching GaN diodes are becoming indispensable for power electronics due to their low on-resistance and capacity to withstand high voltages. A great deal of research has been done on GaN diodes over the decades but a major issue with previous studies is the lack of explicit inclusion of electron-electron interaction, which can be quite important for high carrier densities encountered. Here we consider this electron-electron interaction, within a non-parabolic band scheme, as the first attempt at including such effects when modeling nitride devices. Electron-electron scattering is treated using a real space molecular dynamics approach, which exactly models this interaction within a semi-classical framework. It results in strong carrier-carrier scattering on the biased contact of the resistor, where rapid carrier relaxation occurs.

Keywords

Gallium Nitride Polar Optical Phonon Ionize Impurity Scattering Ensemble Monte Carlo Carrier Thermalization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barker, J., et al.: Bulk GaN and AlGaN/GaN heterostructure drift velocity measurements and comparison to theoretical models. Journal of Applied. Physics 97, 63705 (2005)CrossRefGoogle Scholar
  2. 2.
    Bhapkar, U.V., Shur, M.S.: Monte Carlo calculation of velocity-field characteristics of wurtzite GaN. Journal of Applied Physics 82(4), 1649–1655 (1997)CrossRefGoogle Scholar
  3. 3.
    Camarchia, V., et al.: Theoretical investigation of GaN permeable base transistors for microwave power applications. Semiconductor Science and Technology 21(1), 13–18 (2006)CrossRefGoogle Scholar
  4. 4.
    Farahmand, M., Brennan, K.F.: Comparison between wurtzite phase and zincblende phase GaN MESFETs using a full band Monte Carlo simulation. on Electron Devices 47, 493–497 (2000)CrossRefGoogle Scholar
  5. 5.
    Gelmont, B., Kim, K., Shur, M.: Monte Carlo simulation of electron transport in gallium nitride. Journal of Applied Physics 74(3), 1818–1821 (1993)CrossRefGoogle Scholar
  6. 6.
    Gross, W.J., Vasileska, D., Ferry, D.K.: Discrete impurity effects in nano-scale devices. VLSI Design 13, 75–78 (2001)CrossRefGoogle Scholar
  7. 7.
    Hudgins, J.L., et al.: An assessment of wide bandgap semiconductors for power devices. IEEE Trans. on Power Electronics 18(3), 907–914 (2003)CrossRefGoogle Scholar
  8. 8.
    Kolnik, J., et al.: Electronic transport studies of bulk zincblende and wurtzite phases of GaN based on an ensemble Monte Carlo including a full zone band structure. Journal of Applied Physics 78, 1033–1038 (1995)CrossRefGoogle Scholar
  9. 9.
    Littlejohn, M.A., Hauser, J.R., Glisson, T.H.: Monte Carlo calculation of the velocity-field relationship for gallium nitride. Applied Physics Letters 26, 625–627 (1975)CrossRefGoogle Scholar
  10. 10.
    Mansour, N.S., Kim, K.W., Littlejohn, M.A.: Theoretical study of electron transport in gallium nitride. Journal of Applied Physics 77(6), 2834–2836 (1995)CrossRefGoogle Scholar
  11. 11.
    Matulionis, A., et al.: Hot-phonon temperature and lifetime in a biased AlGaN/GaN channel estimated from noise analysis. Physical Review B 68, 35338 (2003)CrossRefGoogle Scholar
  12. 12.
    Ohno, Y., Kuzuhara, M.: Application of GaN-based heterojunction FETs for advanced wireless communications. IEEE Trans. on Electron Devices 48(3), 517–523 (2001)CrossRefGoogle Scholar
  13. 13.
    Sokolov, V.N., et al.: Terahertz generation in submicron GaN diodes within the limited space-charge accumulation regime. Journal of Applied Physics 98(6), 064501–064507 (2005)CrossRefGoogle Scholar
  14. 14.
    Trew, R.J., Shin, M.W., Gatto, V.: High power applications for GaN-based devices. Solid State Electronics 41(10), 1561–1567 (1997)CrossRefGoogle Scholar
  15. 15.
    Vetury, R., et al.: The impact of surface states on the DC and RF characteristics of AlGaN/GaN HFETs. IEEE Trans. on Electron Devices 48(3), 560–566 (2001)CrossRefGoogle Scholar
  16. 16.
    Wordelman, C., Ravaioli, U.: Integration of a particle-particle-particle-mesh algorithm with the ensemble Monte Carlo method for the simulation of ultra-small semiconductor devices. IEEE Trans. on Electron Devices 47(2), 410–416 (2000)CrossRefGoogle Scholar
  17. 17.
    Yamakawa, S., et al.: Quantum-corrected full-band cellular Monte Carlo simulation of AlGaN/GaN HEMTs. Journal of Computational Electronics 3(3-4), 299–303 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • A. Ashok
    • 1
  • D. Vasileska
    • 1
  • O. Hartin
    • 2
  • S. M. Goodnick
    • 1
  1. 1.Department of Electrical Engineering and Center for Solid State Electronics ResearchArizona State UniversityTempeUSA
  2. 2.Frescale IncTempeUSA

Personalised recommendations