Development of a 3D Parallel Finite Element Monte Carlo Simulator for Nano-MOSFETs

  • Manuel Aldegunde
  • Antonio J. García-Loureiro
  • Karol Kalna
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4818)


A parallel 3D Monte Carlo simulator for the modelling of electron transport in nano-MOSFETs using the Finite Element Method to solve Poisson equation is presented. The solver is parallelised using a domain decomposition strategy, whereas the MC is parallelised using an approach based on the distribution of the particles among processors. We have obtained a very good scalability thanks to the Finite Element solver, the most computationally intensive stage in self-consistent simulations. The parallel simulator has been tested by modelling the electron transport at equilibrium in a 4 nm gate length double gate MOSFET.


Monte Carlo Message Passing Interface Double Gate Finite Element Solver Domain Decomposition Technique 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aldegunde, M., Pombo, J.J., García-Loureiro, A.: Modified octree mesh generation for Manhattan type structures with narrow layers applied to semiconductor devices. In: Numer, J. (ed.) Model.-Electron. Netw. Device Fields, vol. 19(6), pp. 473–489 (2006)Google Scholar
  2. 2.
    Banse, F., et al.: Implementation of a Bi-Parallel Monte Carlo Device Simulation on Two Architectures. In: Bubak, M., Hertzberger, B., Sloot, P.M.A. (eds.) HPCN-Europe 1998. LNCS, vol. 1401, pp. 193–202. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  3. 3.
    Barrett, R., et al.: Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods. SIAM, Philadelphia (2004)zbMATHGoogle Scholar
  4. 4.
    García-Loureiro, A.J., et al.: Parallel finite element method to solve the 3D Poisson equation and its application to abrupt heterojunction bipolar transistors. Int. J. Numer. Methods Eng. 49(5), 639–652 (2000)CrossRefzbMATHGoogle Scholar
  5. 5.
    Group, W., Lusk, E., Skjellum, A.: Using MPI. MIT Press, Boston (1996)Google Scholar
  6. 6.
    Jensen, G.U., et al.: Monte Carlo Simulation of Semiconductor Devices. Comput. Phys. Commun. 67(1), 1–61 (1991)CrossRefzbMATHGoogle Scholar
  7. 7.
    Karypis, G., Kumar, V.: METIS: A software package for partitioning unstructured graphs, partitioning meshes, and computing fill–reducing orderings of sparse matrices. Univ. of Minnesota (1997)Google Scholar
  8. 8.
    Ranawake, U.A., et al.: PMC-3D: A Parallel Three-Dimensional Monte Carlo Semiconductor Device Simulator. IEEE Trans. Comput-Aided Des. Integr. Circuits Syst. 13(6), 712–724 (1994)CrossRefGoogle Scholar
  9. 9.
    Rees, H.D.: Calculation of distribution functions by exploiting the stability of the steady state. J. Phys. Chem. Solids 30(3), 643–655 (1969)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Rees, H.D.: Calculation of steady state distribution functions by exploiting stability. Phys. Lett. A 26(9), 416–417 (1968)CrossRefGoogle Scholar
  11. 11.
    Saad, Y.: Iterative Methods for Sparse Linear Systems. PWS Publishing Co. (1996)Google Scholar
  12. 12.
    Saad, Y., Lo, G.-C., Kuznetsov, S.: PSPARSLIB users manual: A portable library of parallel sparse iterative solvers. Technical report, Univ. of Minnesota, Dept. of Computer Science (1997)Google Scholar
  13. 13.
    Seoane, N., García-Loureiro, A.: Study of parallel numerical methods for semiconductor device simulation. Int. J. Numer. Model.-Electron. Netw. Device Fields 19(1), 15–32 (2006)CrossRefzbMATHGoogle Scholar
  14. 14.
    Zienkiewicz, O.C.: The Finite Element Method. McGraw-Hill, New York (1977)zbMATHGoogle Scholar
  15. 15.

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Manuel Aldegunde
    • 1
  • Antonio J. García-Loureiro
    • 1
  • Karol Kalna
    • 2
  1. 1.Departamento de Electrónica y ComputaciónUniversidad de Santiago de CompostelaSantiago de CompostelaSpain
  2. 2.Device Modelling Group, Department of Electronics & Electrical EngineeringUniversity of GlasgowGlasgowUnited Kingdom

Personalised recommendations