Mesh Independent Convergence Rates Via Differential Operator Pairs

  • Owe Axelsson
  • János Karátson
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4818)


In solving large linear systems arising from the discretization of elliptic problems by iteration, it is essential to use efficient preconditioners. The preconditioners should result in a mesh independent linear or, possibly even superlinear, convergence rate. It is shown that a general way to construct such preconditioners is via equivalent pairs or compactequivalent pairs of elliptic operators.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ashby, S.F., Manteuffel, T.A., Saylor, P.E.: A taxonomy for conjugate gradient methods. SIAM J. Numer. Anal. 27(6), 1542–1568 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Axelsson, O.: A generalized conjugate gradient least square method. Numer. Math. 51, 209–227 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Axelsson, O.: Iterative Solution Methods. Cambridge University Press, Cambridge (1994)CrossRefzbMATHGoogle Scholar
  4. 4.
    Axelsson, O.: On iterative solvers in structural mechanics; separate displacement orderings and mixed variable methods. Math. Comput. Simulation 50(1-4), 11–30 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Axelsson, O., Karátson, J.: Conditioning analysis of separate displacement preconditioners for some nonlinear elasticity systems. Math. Comput. Simul. 64(6), 649–668 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Axelsson, O., Karátson, J.: Superlinearly convergent CG methods via equivalent preconditioning for nonsymmetric elliptic operators. Numer. Math. 99(2), 197–223 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Axelsson, O., Karátson J.: Symmetric part preconditioning of the CGM for Stokes type saddle-point systems. Numer. Funct. Anal. Optim. (to appear)Google Scholar
  8. 8.
    Axelsson, O., Karátson J.: Mesh independent superlinear PCG rates via compact-equivalent operators. SIAM J. Numer. Anal. (to appear)Google Scholar
  9. 9.
    Axelsson, O., Karátson J.: Equivalent operator preconditioning for linear elliptic problems (in preparation)Google Scholar
  10. 10.
    D’yakonov, E.G.: The construction of iterative methods based on the use of spectrally equivalent operators. USSR Comput. Math. and Math. Phys. 6, 14–46 (1965)CrossRefzbMATHGoogle Scholar
  11. 11.
    Eisenstat, S.C., Elman, H.C., Schultz., M.H.: Variational iterative methods for nonsymmetric systems of linear equations. SIAM J. Numer. Anal. 20(2), 345–357 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Faber, V., Manteuffel, T., Parter, S.V.: On the theory of equivalent operators and application to the numerical solution of uniformly elliptic partial differential equations. Adv. in Appl. Math. 11, 109–163 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Hestenes, M.R., Stiefel, E.: Methods of conjugate gradients for solving linear systems. J. Res. Nat. Bur. Standards, Sect. B 49(6), 409–436 (1952)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Karátson J., Kurics T.: Superlinearly convergent PCG algorithms for some nonsymmetric elliptic systems. J. Comp. Appl. Math. (to appear)Google Scholar
  15. 15.
    Manteuffel, T., Parter, S.V.: Preconditioning and boundary conditions. SIAM J. Numer. Anal. 27(3), 656–694 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Zlatev, Z.: Computer treatment of large air pollution models. Kluwer Academic Publishers, Dordrecht (1995)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Owe Axelsson
    • 1
    • 2
  • János Karátson
    • 3
  1. 1.Department of Information TechnologyUppsala UniversitySweden
  2. 2.Institute of Geonics AS CROstravaCzech Republic
  3. 3.Department of Applied AnalysisELTE UniversityBudapestHungary

Personalised recommendations