Skip to main content

Genomic Organization and Mechanisms of Inheritance in Arbuscular Mycorrhizal Fungi: Contrasting the Evidence and Implications of Current Theories

  • Chapter
Mycorrhiza

Most plants, including the majority of crop species, associate with a specific group of soil fungi called arbuscular mycorrhizal (AM) fungi. These fungi facilitate the uptake of plant resources and are increasingly acknowledged as being critical to ecosystem function. This high level of ecological success is not expected for species that reproduce asexually, as they are expected to be vulnerable to accumulation of deleterious mutations (Muller 1932; Kondrashov 1988) and pathogenesis (Hamilton 1980; Lively 1987). Rather, AM fungi have flourished since the origin of plants (Pirozynski and Malloch 1975; Redecker et al. 2000), and appear to be the oldest asexual multicellular eukaryotes. While the ecological importance and evolutionary novelty of these fungi have become clear, the basic genetics of these fungi remain enigmatic. In fact, their genetic structure seems unusual in two ways. Firstly, individual cells always contain many nuclei, into the thousands or tens of thousands. And secondly, individual cells also contain very high levels of genetic variation, with as many as 13 variants at what would be expected to be single copy regions of the genome. It is likely that the presence and maintenance of this high level of standing variation is related to the long-term persistence and ecological success of these asexual species. However, basic issues such as the arrangement of this variation between, or within, nuclei remain controversial.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 349.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alexopoulos CJ, Mims CW, Blackwell M (1996) Introductory mycology, 4th edn. Wiley, New York

    Google Scholar 

  • Avise J (2004) Molecular markers, natural history, and evolution, 2nd edn. Sinauer, Sunderland, Mass.

    Google Scholar 

  • Becard G, Pfeffer PE (1993) Status of nuclear division in arbuscular mycorrhizal fungi during in-vitro development. Protoplasma 174:62-68

    Article  Google Scholar 

  • Bentivenga SP, Morton JB (1996) Congruence of fatty acid methyl ester profiles and morphological characters of arbuscular mycorrhizal fungi in Gigasporaceae. Proc Nat Acad Sci USA 93:5659-5662

    Article  CAS  Google Scholar 

  • Bentivenga SP, Bever JD, Morton JB (1997) Genetic variation of morphological characters within a single isolate of the endomycorrhizal fungus Glomus clarum (Glomaceae). Am J Bot 84:1211-1216

    Article  Google Scholar 

  • Bever JD, Morton J (1999) Heritable variation and mechanisms of inheritance of spore shape within a population of Scutellospora pellucida, an arbuscular mycorrhizal fungus. Am J Bot 86:1209-1216

    Article  Google Scholar 

  • Bever JD, Wang M (2005) Arbuscular mycorrhizal fungi-hyphal fusion and multigenomic structure. Nature 433, E3-E4

    Article  CAS  Google Scholar 

  • Clapp JP, Fitter AH, Young JPW (1999) Ribosomal small subunit sequence variation within spores of an arbuscular mycorrhizal fungus, Scutellospora sp. Mol Ecol 8:915-921

    Article  CAS  Google Scholar 

  • Cooke JC, Gemma JN, Koske RE (1987) Observations of nuclei in vesicular-arbuscular mycorrhizal fungi. Mycologia 79:331-333

    Article  Google Scholar 

  • Davis RH (1966) Heterokaryosis, In: Ainsworth GS, Sussman AS (eds) The fungi: an advanced treatise. Academic, New York, pp 567-588

    Google Scholar 

  • de la Providencia IE, de Souza FA, Fernandez F, Séjalon-Delmas N, Declerck S (2005) Arbuscular mycorrhizal fungi reveal distinct patterns of anastomosis formation and hyphal healing mechanisms between different phylogenetic groups. New Phytol 165:261-271

    Article  Google Scholar 

  • Franke M, Morton J (1994) Ontogenic comparisons of arbuscular mycorrhizal fungi Scutellospora heterogama and Scutellospora pellucida - revision of taxonomic character concepts, species descriptions, and phylogenetic hypotheses. Can J Bot 72:122-134

    Article  Google Scholar 

  • Giovannetti M, Azzolini D, Citernesi AS (1999) Anastomosis formation and nuclear and protoplasmic exchange in arbuscular mycorrhizal fungi. Appl Environ Microbiol 65:5571-5575

    CAS  Google Scholar 

  • Giovannetti M, Fortuna P, Citernesi AS, Morini S, Nuti MP (2001) The occurrence of anastomosis formation and nuclear exchange in intact arbuscular mycorrhizal networks. New Phytol 151:717-724

    Article  Google Scholar 

  • Giovannetti M, Sbrana C, Strani P, Agnolucci M, Rinaudo V, Avio L (2003) Genetic diversity of isolates of Glomus mosseae from different geographic areas detected by vegetative compatibility testing and biochemical and molecular analysis. Appl Environ Microbiol 69:616-624

    Article  CAS  Google Scholar 

  • Giovannetti M, Sbrana C, Avio L, Strani P (2004) Patterns of below-ground plant interconnections established by means of arbuscular mycorrhizal networks. New Phytol 164:175-181

    Article  Google Scholar 

  • Hamby RK, Zimmer EA (1992) Ribosomal RNA as a phylogenetic tool in plant systematics, In: Soltis PS, Soltis DE, Doyle JJ (eds) Molecular systematics of plants. Chapman and Hall, New York, pp 50-91

    Google Scholar 

  • Hamilton WD (1980) Sex versus non-sex versus parasite. Oikos 35:282-290

    Article  Google Scholar 

  • Hijri M, Sanders IR (2005) Low gene copy number shows that arbuscular mycorrhizal fungi inherit genetically different nuclei. Nature 433:160-163

    Article  CAS  Google Scholar 

  • Hijri M, Hosny M, van Tuinen D, Dulieu H (1999) Intraspecific ITS polymorphism in Scutellospora castanea (Glomales, Zygomycota) is structured within multinucleate spores. Fungal Genet Biol 26:141-151

    Article  CAS  Google Scholar 

  • Hijri M, Redecker D, Petetot JAMC, Voigt K, Wostemeyer J, Sanders IR (2002) Identification and isolation of two ascomycete fungi from spores of the arbuscular mycorrhizal fungus Scutellospora castanea. Appl Environ Microbiol 68:4567-4573

    Article  CAS  Google Scholar 

  • Hosny M, Gianinazzi-Pearson V, Dulieu H (1998) Nuclear DNA content of 11 fungal species in Ingold CT, Glomales. Genome 41:422–428

    Article  CAS  Google Scholar 

  • Ingold CT, Hudson HJ (1993) The biology of fungi, 6th edn. Chapman and Hall, London

    Google Scholar 

  • Kondrashov AS (1988) Deleterious mutations and the evolution of sexual reproduction. Nature 336:435-440

    Article  CAS  Google Scholar 

  • Kuhn G, Hijri M, Sanders IR (2001) Evidence for the evolution of multiple genomes in arbuscular mycorrhizal fungi. Nature 414:745-748

    Article  CAS  Google Scholar 

  • Leslie JF (1993) Fungal vegetative compatibility. Annu Rev Phytopathol 31:127-150

    Article  CAS  Google Scholar 

  • Lively CM (1987) Evidence from a New Zealand snail for the maintenance of sex by parasitism. Nature 328:519-521

    Article  Google Scholar 

  • Lloyd-Macgilp SA, Chambers SM, Dodd JC, Fitter AH, Walker C, Young JPW (1996) Diversity of the ribosomal internal transcribed spacers within and among isolates of Glomus mosseae and related mycorrhizal fungi. New Phytol 133:103-111

    Article  CAS  Google Scholar 

  • Lynch M, Walsh JB (1998) Genetics and analysis of quantitative traits. Sinauer, Sunderland, Mass.

    Google Scholar 

  • Mendel G (1865) Versuche über pflanzen-hybriden. Trans Verh Naturforsch Ver Brünn 4:3-270

    Google Scholar 

  • Morton JB (1995) taxonomic and phylogenetic divergence among 5 Scutellospora species based on comparative developmental sequences. Mycologia 87:127-137

    Article  Google Scholar 

  • Morton JB, Bentivenga SP, Wheeler WW (1993) Germ plasm in the international collection of arbuscular and vesicular-arbuscular mycorrhizal fungi (INVAM) and procedures for culture development, documentation and storage. Mycotaxon 48:491-528

    Google Scholar 

  • Muller HJ (1932) Some genetic aspectd of sex. Am Nat 66:118-138

    Article  Google Scholar 

  • Pawlowska TE (2005) Genetic processes in arbuscular mycorrhizal fungi. FEMS Microbiol Lett 251:185-192

    Article  CAS  Google Scholar 

  • Pawlowska TE, Taylor JW (2004) Organization of genetic variation in individuals of arbuscular mycorrhizal fungi. Nature 427:733-737

    Article  CAS  Google Scholar 

  • Pawlowska TE, Taylor JW (2005) Arbuscular mycorrhizal fungi-hyphal fusion and multigenomic structure. Reply. Nature 433:E4-E5

    Article  CAS  Google Scholar 

  • Pirozynski KA, Malloch DW (1975) Origin of land plants-matter of mycotropism. Biosystems 6:153-164

    Article  CAS  Google Scholar 

  • Pringle A, Moncalvo JM, Vilgalys R (2000) High levels of variation in ribosomal DNA sequences within and among spores of a natural population of the arbuscular mycorrhizal fungus Acaulospora colossica. Mycologia 92:259-268

    Article  CAS  Google Scholar 

  • Pringle A, Moncalvo JM, Vilgalys R (2003) Revisiting the rDNA sequence diversity of a natural population of the arbuscular mycorrhizal fungus Acaulospora colossica. Mycorrhiza 13:227-231

    Article  CAS  Google Scholar 

  • Redecker D, Kodner R, Graham LE (2000) Glomalean fungi from the Ordovician. Science 289:1920-1921

    Article  CAS  Google Scholar 

  • Sanders IR, Alt M, Groppe K, Boller T, Wiemken A (1995) Identification of ribosomal DNA polymorphisms among and within spores of the Glomales-application to studies on the genetic diversity of arbuscular mycorrhizal fungal communities. New Phytol 130:419-427

    Article  CAS  Google Scholar 

  • Stukenbrock EH, Rosendahl S (2005) Clonal diversity and population genetic structure of arbuscular mycorrhizal fungi (Glomus sp.) studied by multilocus genotyping of single spores. Mol Ecol 14:743-752

    Article  CAS  Google Scholar 

  • Suzuki DT, Miller J, Lewontin RC (1986) Introduction to genetic analysis, 3rd edn. Freeman, New York

    Google Scholar 

  • Trouvelot S, van Tuinen D, Hijri M, Gianinazzi-Pearson V (1999) Visualization of ribosomal DNA loci in spore interphasic nuclei of glomalean fungi by fluorescence in situ hyhridization. Mycorrhiza 8:203-206

    Article  CAS  Google Scholar 

  • Vanderkoornhuyse P, Leyval C, Bonnin I (2001) High genetic diversity in arbuscular mycorrhizal fungi: evidence for recombination events. Heredity 87:243-253

    Article  Google Scholar 

  • Voets L, de la Providencia IE, Declerck S (2006) Glomeraceae and Gigasporaceae differ in their ability to form hyphal networks. New Phytol 172:185-188

    Article  Google Scholar 

  • Weir BS (1996) Genetic data analysis II: methods for discrete population genetic data, 2nd edn. Sinauer, Sunderland, Mass.

    Google Scholar 

  • Yilmaz LS, Noguera DR (2004) Mechanistic approach to the problem of hybridization efficiency in fluorescent in situ hybridization. Appl Environ Microbiol 70:7126-7139

    Article  CAS  Google Scholar 

  • Zolan ME (1995) Chromosome-length polymorphism in fungi. Microbiol Rev 59:686-698

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James D. Bever .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bever, J.D., Kang, HJ., Kaonongbua, W., Wang, M. (2008). Genomic Organization and Mechanisms of Inheritance in Arbuscular Mycorrhizal Fungi: Contrasting the Evidence and Implications of Current Theories. In: Varma, A. (eds) Mycorrhiza. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78826-3_7

Download citation

Publish with us

Policies and ethics