Skip to main content

Foraging for Resources in Arbuscular Mycorrhizal Fungi: What is an Obligate Symbiont Searching for and How is it Done?

  • Chapter
Mycorrhiza

This chapter presents first a brief summary of basic concepts about foraging and foraging theory derived from studies in animals and applied later to the search of resources in plants and fungi. Efficiency in the search and acquisition of resources is an important component of fitness in the plant and the fungal partner, and a fundamental contributor for a successful mutualistic symbiosis, but foraging is still a neglected area in mycorrhizal research. Arbuscular mycorrhizal fungi are obligate symbionts that obtain all their carbon from the plant they colonise but have to find other resources through soil exploration. The search is therefore constrained by this carbon dependency and recent discoveries about their growth and physiology have important implications on our understanding of foraging capacities, limits and strategies in these organisms. Also, an overview of the results of some experiments testing hypotheses and models presented in a previous review on foraging activities, resource allocation and responsiveness to enriched patches with different resources is provided. Two models, a two-dimensional and a multidimensional, have been used for those tests and are discussed but the information available is still too scarce to suggest general patterns of foraging in arbuscular mycorrhizal fungi. Finally, there is an evaluation of new directions, promising approaches and methodological developments for further research on this topic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 349.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albertsen A, Ravnskov S, Green H, Jensen DF, Larsen J (2006) Interactions between the external mycelium of the mycorrrhizal fungus Glomus intraradices and other soil microorganisms as affected by organic matter. Soil Biol Biochem 38:1008-1014

    Article  CAS  Google Scholar 

  • Augé RM (2001) Water relations, drought and vesicular-arbuscular symbiosis. Mycorrhiza 11:3-42

    Article  Google Scholar 

  • Avio L, Pellegrino E, Bonari E, Giovantetti M (2006) Functional diversity of arbuscular mycorrhizal fungal isolates in relation to extraradical mycelial networks. New Phytol 172:347-357

    Article  PubMed  Google Scholar 

  • Bago B (2000) Putative sites for nutrient uptake in arbuscular mycorrhizal fungi. Plant Soil 226:263-274

    Article  CAS  Google Scholar 

  • Bago B, Pfeffer PE, Shachar-Hill Y (2000) Carbon metabolism and transport in arbuscular mycor- rhizas. Plant Physiol 124:949-957

    Article  CAS  PubMed  Google Scholar 

  • Bago B, Zipfel W, Williams RM, Jun J, Arreola R, Lammers PJ, Pfeffer PE, Shachar-Hill Y (2002) Translocation and utilization of fungal storage lipid in the arbuscular mycorrhizal symbiosis. Plant Physiol 128:108-124

    Article  CAS  PubMed  Google Scholar 

  • Bago B, Pfeffer PE, Abubaker J, Jun J, Allen JW, Brouillette J, Douds DD, Lammers PJ, Shachar- Hill Y (2003) Carbon export from arbuscular mycorrhizal roots involves the translocation of carbohydrate as well as lipid. Plant Physiol 131:1496-1507

    Article  CAS  PubMed  Google Scholar 

  • Bell AD (1984) Dynamic morphology: a contribution to plant ecology. In: Dirzo R, Sarukhan J (eds) Perspectives on plant population ecology. Sinauer, Sunderland, Mass., pp 48-65

    Google Scholar 

  • Bending GD, Read DJ (1995) The structure and function of the vegetative mycelium of ectomyc- orrhizal plants. V. The foraging behaviour of ectomycorrhizal mycelium and the translocation of nutrients from exploited organic matter. New Phytol 130:401-409

    Article  CAS  Google Scholar 

  • Boddy L (1999) Saprotrophic cord-forming fungi: meeting the challenge of heterogeneous environments. Mycologia 91:13-32

    Article  Google Scholar 

  • Boschker HTS, Middelburg JJ (2002) Stable isotopes and biomarkers in microbial ecology. FEMS Microbiol Ecol 40:85-95

    Article  CAS  PubMed  Google Scholar 

  • Cole ES, Mahall BE (2006) A test for hydrotropic behavior by roots of two coastal dune shrubs. New Phytol 172:358-368

    Article  PubMed  Google Scholar 

  • Cui M, Caldwell MM (1996a) Facilitation of plant phosphate acquisition by arbuscular mycor- rhizas from enriched soil patches. I. Roots and hyphae exploiting the same soil volume. New Phytol 133:453-460

    Article  CAS  Google Scholar 

  • Cui M, Caldwell MM. 1996b. Facilitation of plant phosphate acquisition by arbuscular mycor- rhizas from enriched soil patches. II. Hyphae exploiting root-free soil. New Phytol 133:461-467

    Article  CAS  Google Scholar 

  • De Kroon H, Mommer L (2006) Root foraging theory put to the test. Trends Ecol Evol 21:113-116

    Article  PubMed  Google Scholar 

  • De la Providencia IE, Fernández F, Declerck S (2006) Hyphal healing mechanism in the arbuscu- lar mycorrhizal fungi Scutellospora reticulata and Glomus clarum differs in response to severe physical stress. FEMS Microbiol Lett 268:120-125

    Article  Google Scholar 

  • De Souza FA, Declerck S (2003) Mycelium development and architecture, and spore production of Scutellospora reticulata in monoxenic culture with Ri T-DNA transformed carrot roots. Mycologia 95:1004-1012

    Article  Google Scholar 

  • Dodd JC, Boddington C, Rodriguez A, Gonzalez-Chavez C, Mansur I (2000) Mycelium of arbus- cular mycorrhizal fungi (AMF) from different genera: form, function and detaction. Plant Soil 226:131-151

    Article  CAS  Google Scholar 

  • Donnelly DP, Boddy L (1997) Development of mycelial systems of Stropharia caerulea and Phanerochaete velutina on soil: effect of temperature and water potential. Mycol Res 101:705-713

    Article  Google Scholar 

  • Donnelly DP, Boddy L, Leake J (2004) Development, persistence and regeneration of foraging ectomycorrhizal mycelial systems in soil microcosms. Mycorrhiza 14:37-45

    Article  PubMed  Google Scholar 

  • Eissenstat DM, Graham JH, Syvertsen JP, Drouillard DL (1993) Carbon economy of sour orange in relation to mycorrhizal colonization and phosphorus status. Ann Bot 71:1-10

    Article  CAS  Google Scholar 

  • Evershed RP, Crossan ZM, Bull ID, Mottram H, Dungait JA J, Maxfield PJ, Brennand EL (2006) 13C-labelling of lipids to investigate microbial communities in the environment. Curr Op Biotechnol 17:72-82

    Article  CAS  Google Scholar 

  • Farley RA, Fitter AH (1999) The responses of seven co-occurring woodland herbaceous perennials to localized nutrient-rich patches. J Ecol 87:849-859

    Article  Google Scholar 

  • Farrar JF, Jones DL (2000) The control of carbon acquisition by roots. New Phytol 147:43-53

    Article  CAS  Google Scholar 

  • Fitter AH, Heinemeyer A, Staddon PL (2000) The impact of elevated CO2 and global climate change on arbuscular mycorrhizas: a mycocentric approach. New Phytol 14:179-187

    Article  Google Scholar 

  • Friese CF, Allen MF (1991) The spread of VA mycorrhizal fungal hyphae in the soil: inoculum types and external hyphae architecture. Mycologia 83:409-418

    Article  Google Scholar 

  • Gavito ME, Olsson PA (2003) Allocation of plant carbon to foraging and storage in arbuscular mycorrhizal fungi. FEMS Microbiol Ecol 45:181-187

    Article  CAS  PubMed  Google Scholar 

  • Gavito ME, Olsson PA (2008) Foraging strategies of the external mycelium of the arbuscular mycorrhizal fungi Glomus intraradices and Scutellospora calospora. Appl Soil Ecol 39:282-290

    Article  Google Scholar 

  • Gavito, ME, Bruhn D, Jakobsen I (2002) Phosphorus uptake by arbuscular mycorrhizal hyphae does not increase when the host plant grows under atmospheric CO2 enrichment. New Phytol 154:751-760

    Article  CAS  Google Scholar 

  • Gill RA, Jackson RB (2000) Global patterns of root turnover for terrestrial ecosystems. New Phytol 147:13-31

    Article  Google Scholar 

  • Giovanetti M, Sbrana C, Logi C (2000) Microchambers and video-enhanced light microscopy for monitoring cellular events in living hyphae of arbuscular mycorrhizal fungi. Plant Soil 226:153-159

    Article  Google Scholar 

  • Grime JP, Mackey JML (2002) The role of plasticity in resource capture by plants. Evol Ecol 16:299-307

    Article  Google Scholar 

  • Gryndler M, Larsen J, Hršezáčová V, Gryndlerová H, Kubát J (2006) Organic and mineral fertilization, respectively, increase and decrease the development of external mycelium of arbuscular mycorrhizal fungi in a long-term field experiment. Mycorrhiza 16:159-166

    Article  CAS  PubMed  Google Scholar 

  • Harris M, Boddy L (2005) Nutrient movement and mycelial reorganization in established systems of Phanerochaete velutina, following arrival of colonized wood resources. Microbial Ecol 50:141-151

    Article  Google Scholar 

  • Hodge A (2001) Arbuscular mycorrhizal fungi influence decomposition of, but not plant nutrient capture from, glycine patches in soil. New Phytol 151:725-734

    Article  CAS  Google Scholar 

  • Hodge A (2005) Plastic plants and patchy soils. J Exp Bot 57:401-411

    Article  PubMed  Google Scholar 

  • Hodge A, Stewart J, Robinson D, Griffiths BS, Fitter AH (1999) Plant, soil fauna and microbial responses to N-rich organic patches of contrasting temporal availability. Soil Biol Biochem 31:1517-1530

    Article  CAS  Google Scholar 

  • Hodge A, Robinson D, Fitter AH (2000a) An arbuscular mycorrhizal inoculum enhances root proliferation in, but not nitrogen capture from nutrient-rich patches in soil. New Phytol 145:575-584

    Article  CAS  Google Scholar 

  • Hodge A, Stewart J, Robinson D, Griffiths BS, Fitter AH (2000b) Competition between roots and soil microorganisms from nitrogen-rich patches of varying complexity. J Ecol 88:150-164.

    Article  Google Scholar 

  • Jakobsen I, Abbott LK, Robson AD (1992) External hyphae of vesicular-arbuscular mycorrhizal fungi associated to Trifolium subterraneum L. 1. Spread of hyphae and phosphorus inflow into roots. New Phytol 120:371-380

    Article  CAS  Google Scholar 

  • Jansen C, van Kempen MML, Bogemann GM, Bouma TJ, de Kroon H (2006) Limited costs of wrong root placement in Rumex palustris in heterogeneous soils. New Phytol 171:117-126

    Article  CAS  PubMed  Google Scholar 

  • Jentschke G, Godbold DL, Brandes B (2001) Nitrogen limitation in mycorrhizal Norway spruce (Picea abies) seedling induced mycelial foraging for ammonium: implications for Ca and Mg uptake. Plant Soil 234:109-117

    Article  CAS  Google Scholar 

  • Joner EJ, Jakobsen I (1995) Growth and extracellular phosphatase activity of arbuscular mycor- rhizal hyphae as influenced by soil organic matter. Soil Biol Biochem 27:1153-1159

    Article  CAS  Google Scholar 

  • Kelly CK (1990) Plant foraging: a marginal value model and coiling response in Cuscuta subin- clusa. Ecology 71:1916-1925

    Article  Google Scholar 

  • Kembel SW, Cahill Jr JF, Westoby M, Losos JB (2005) Plant phenotypic plasticity belowground: a phylogenetic perspective on root foraging trade-offs. Am Nat 166:216-230

    Article  PubMed  Google Scholar 

  • Larsen J, Jakobsen I (1996) Interactions between a mycophagous collembola, dry yeast and exter- nal mycelium of an arbuscular mycorrhizal fungus. Mycorrhiza 6:259-264

    Article  Google Scholar 

  • Lindahl B, Stenlid J, Finlay R (2001) Effects of resource availability on mycelial interactions and 32P-transfer between a saprotrophic and an ectomycorrhizal fungus in soil microcosms. FEMS Microbiol Ecol 38:43-52

    Article  CAS  Google Scholar 

  • MacArthur RH, Pianka ER (1966) On optimal use of a patchy environment. Am Nat 100: 603-609

    Article  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants. Academic Press, London

    Google Scholar 

  • Marulanda A, Azcón R, Ruiz-Lozano JM (2003) Contribution of six arbuscular mycorrhizal fungi isolates to water uptake by Lactuca sativa L. plants under drought stress. Physiol Plant 119:526-533

    Article  CAS  Google Scholar 

  • Mihail JD, Bruhn JN (2005) Foraging behaviour of Armillaria rhizomorph systems. Mycol Res 109:1195-1207

    Article  PubMed  Google Scholar 

  • Nakano A, Takahashi K, Kimura M (1999) The carbon origin of arbuscular mycorrhizal fungi estimated from δ13C values of individual spores. Mycorrhiza 9:41-47

    Article  CAS  Google Scholar 

  • Nakano-Hylander A, Olsson P A (2007) Carbon allocation in arbuscular mycorrhizal fungi during colonisation of plant seedlings. Soil Biol Biochem 39:1450-1458

    Article  CAS  Google Scholar 

  • Olsson PA, Johansen A (2000) Lipid and fatty acid composition of hyphae and spores of arbuscu- lar mycorrhizal fungi at different growth stages. Mycol Res 104:429-434

    Article  CAS  Google Scholar 

  • Olsson PA, Jakobsen I, Wallander H (2002) Foraging and resourceallocation strategies of mycor- rhizal fungi in a patchy environment. In: Van der Heijden MGA, Sanders IR (eds) Mycorrhizal ecology. Springer, Heidelberg, pp 93-115

    Google Scholar 

  • Olsson PA, van Aarle IM, Gavito, ME, Bengtson P, Bengtsson G (2005) 13C-incorporation into signature fatty acids as a way to trace and quantify carbon allocation in arbuscular mycor- rhizas. Appl Environ Microbiol 71:2592-2599

    Article  CAS  PubMed  Google Scholar 

  • Peng S, Eissenstat DM, Graham JH, Williams K, Hodge NC (1993) Growth depression in mycor- rhizal citrus at high-phosphorus supply. Analysis of carbon cost. Plant Physiol 101:1063-1071

    CAS  PubMed  Google Scholar 

  • Pfeffer PE, Douds DD, Bücking H, Schwartz DP, Shachar-Hill Y (2004) The fungus does not transfer carbon to or between roots in an arbuscular mycorrhizal symbiosis. New Phytol 163:617-627

    Article  Google Scholar 

  • Pritchard SG, Rogers HH (2000) Spatial and temporal development of crop roots in CO2-enriched environments. New Phytol 147:55-71

    Article  CAS  Google Scholar 

  • Rangel-Castro JI, Killham K, Ostle N, Nicol GW, Anderson IC, Scrimgeour CM, Ineson P, Meharg A, Prosser JI (2005) Stable isotope probing analysis of the influence of liing o root exudate utilization by soil microorganisms. Environ Microbiol 7:828-838

    Article  CAS  PubMed  Google Scholar 

  • Ravnskov S, Larsen J, Olsson PA, Jakobsen I (1999) Effects of various organic compounds on growth and phosphorus uptake of an arbuscular mycorrhizal fungus. New Phytol 141:517-524

    Article  CAS  Google Scholar 

  • Ritz K, Millar SM, Crawford J W (1996) Detailed visualization of hyphal distribution in fungal mycelia growing in heterogeneous nutritional environments. J Microbiol Methods 25:23-28

    Article  Google Scholar 

  • Ruiz-Lozano JM (2003) Arbuscular mycorrhizal symbiosis and alleviation of osmotic stress. New perspectives for molecular studies. Mycorrhiza 13:309-317

    Article  PubMed  Google Scholar 

  • Ruiz-Lozano JM, Porcel R, Aroca R (2006) Does the enhanced tolerance of arbuscular mycor- rhizal plants to water stress deficit involve modulation of drought-induced plant genes? New Phytol 171:693-698

    Article  CAS  PubMed  Google Scholar 

  • Schmid B, Harper JL (1985) Clonal growth in grassland perennials. I. Density and pattern depend- ent competition between plants with different growth forms. J Ecol 73:793-808

    Google Scholar 

  • Smith SE, Read D J (1997) Mycorrhizal symbiosis. Academic Press, London St. John TV, Coleman DC, Reid CPP (1983a) Growth and spatial distribution of nutrient-absorb- ing organs: selective exploitation of soil heterogeneity. Plant Soil 71:487-493

    Google Scholar 

  • St. John TV, Coleman DC, Reid CPP (1983b) Association of vesicular-arbuscular mycorrhizal hyphae with soil organic particles. Ecology 64:957-959

    Article  Google Scholar 

  • Stephens DW, Krebs JR (1986) Foraging theory. Princeton University Press, Princeton

    Google Scholar 

  • Streitwolf-Engel R, Boller T, Wiemken A, Sanders IR (1997) Clonal growth traits of two Prunella species are determined by co-occurring arbuscular mycorrhizal fungi from a calcareous grass- land. J Ecol 85:181-191

    Article  Google Scholar 

  • Tibbett M (2000) Roots, foraging and the exploitation of soil nutrient patches: the role of mycor- rhizal symbiosis. Funct Ecol 14:397-399

    Article  Google Scholar 

  • Treonis AM, Ostle NJ, Stott AW, Primrose R, Grayston SJ, Ineson P (2004) Identification of groups of metabolically-active rhizosphere microorganisms by stable isotope probing of PLFAs. Soil Biol Biochem 36:533-537

    Article  CAS  Google Scholar 

  • Voets L, De la Providencia IE, Declerck S (2006) Glomeraceae and Gigasporaceae differ in their ability to form hyphal networks. New Phytol 172:185-188

    Article  PubMed  Google Scholar 

  • Walk TC, Jaramillo R, Lynch JP (2006) Architectural trade offs between adventitious and basal roots for phosphorus acquisition. Plant Soil 279:347-366

    Article  CAS  Google Scholar 

  • Wallander H, Lindahl B, Nilsoon LO (2006) Limited transfer of nitrogen between wood decom- posing and ectomycorrhizal mycelia when studied in the field. Mycorrhiza 16:213-217

    Article  CAS  PubMed  Google Scholar 

  • Wang LX, Mou PP, Jones RH (2006) Nutrient foraging via physiological and morphological plas- ticity in three plant species. Can J For Res 36:164-173.

    Article  CAS  Google Scholar 

  • Wellington EH, Berry A, Krsek M (2003) Resolving functional diversity in relation to microbial community structure in soil: exploiting genomics and stable isotope probing. Curr Op Microbiol 6:295-301

    Article  CAS  Google Scholar 

  • Whiteley AS, Manefield M, Lueders T (2006) Unlocking the ‘microbial box’ using RNA-based stable isotope probing technologies. Curr Op Biotechnol 17:67-71

    Article  CAS  Google Scholar 

  • Yang ZJ, Midmore DJ (2005) Modelling plant resource allocation and growth partitioning in response to environmental heterogeneity. Ecol Model 181:59-77

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mayra E. Gavito .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gavito, M.E., Olsson, P.A. (2008). Foraging for Resources in Arbuscular Mycorrhizal Fungi: What is an Obligate Symbiont Searching for and How is it Done?. In: Varma, A. (eds) Mycorrhiza. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78826-3_4

Download citation

Publish with us

Policies and ethics