Skip to main content
Book cover

Mycorrhiza pp 733–752Cite as

Arbuscular Mycorrhiza in Physiological and Morphological Adaptations of Mediterranean Plants

  • Chapter

Vascular plants are composed of two distinct parts: the aboveground (autotrophic leaves) and the belowground (heterotrophic roots). Both are structured to enable resource capture, but in distinct environments. While the leaves contact with a medium where micro- organisms are scarce, roots contact with a medium where micro- organisms are abundant and therefore evolved to take advantage of them, in particular through arbuscular mycorrhizal (AM) symbiosis. In this chapter we would like to show that the responsiveness of plants to AM symbiosis in slow-growing wild species is dependent on soil AMF communities and their interference with carbon and nitrogen fluxes between the two partners. The results suggest that in low-resource environments, root system physiology adapts to maximise uptake capacity, and root system morphology adapts to maximise active uptake length. These observations demonstrate that mycorrhizal symbioses can be beneficial to plants, especially those in stressful environments, such as those of Mediterranean climates.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   269.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   349.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ames RN, Reid CPP, Porter LK, Cambardella C (1983) Hyphal uptake and transport of nitrogen from two 15N-labelled sources by Glomus mossae, a vesicular arbuscular mycorrhizal fungus. New Phytol 95:381-396

    Article  Google Scholar 

  • Auge RM (2001) Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza 11:3-42

    Article  Google Scholar 

  • Bago B, Pfeffer PE, Shachar-Hill Y (2000) Carbon metabolism and transport in arbuscular mycor- rhizas. Plant Physiol 12:949-957

    Article  Google Scholar 

  • Bago B, Pfeffer P, Shachar-Hill Y (2001) Could the urea cycle be translocating nitrogen in the arbuscular mycorrhizal symbiosis? New Phytol 149:4-8

    Article  CAS  Google Scholar 

  • Bago B, Vierheilig H, Piche Y, Azcón Aguilar C (1996) Nitrate depletion and pH changes induced by the extra-radical mycelium of the arbuscular mycorrhizal fungus Glomus intraradices grown in monoxenic culture. New Phytol 133:273-280

    Article  Google Scholar 

  • Baylis GTS (1975) The magnoid mycorrhiza and mycotrophy in root system derived from it. In: Sanders EF, Moose B, Turker PB (eds) Endomycorrhizas. Academic, New York, pp 373-389

    Google Scholar 

  • Berta G, Fusconi A, Trotta A, Scannerini S (1990) Morphogenetic modifications induced by the mycorrhizal fungus Glomus strain E3 in the root system of Allium porrum L. New Phytol 114:207-215

    Article  Google Scholar 

  • Berta G, Fusconi A, Trotta A (1993) VA mycorrhizal infection and the morphology and function of root systems. Environ Exp Bot 33:159-173

    Article  Google Scholar 

  • Black KG, Mitchell DT, Osborne BA (2000) Effect of mycorrhizal-enhanced leaf phosphate status on carbon partitioning, translocation and photosynthesis in cucumber. Plant Cell Environ 23:797-809

    Article  CAS  Google Scholar 

  • Blee KA, Anderson AJ (1998) Regulation of arbuscule formation by carbon in the plant. Plant J 16:523-530

    Article  Google Scholar 

  • Bouma TJ, Yanai RD, Elkin AD, Hartmond U, Flores-Alva DE, Eissenstat DM (2000) Estimating age-dependent costs and benefits of roots with contrasting life span: comparing apples and oranges. New Phytol 150:685-695

    Article  Google Scholar 

  • Britto DT, Kronzucker HJ (2002) NH4+ toxicity in higher plants: a critical review. J Plant Physiol 159:567-584

    Article  CAS  Google Scholar 

  • Caravaca F, Al Guacil MM, Hernandez JA, Roldan A (2005). Involvement of antioxidant enzyme and nitrate reductase activities during water stress and recovery of mycorrhizal Myrtus com- munis and Phillyrea angustifolia plants. Plant Sci 169:191-197

    Article  CAS  Google Scholar 

  • Chiou TJ, Aung K, Lin S-I, Wu CC, Chiang S-F, Sua C-L (2005) Regulation of phosphate home- ostasis by microrna in Arabidopsis. Plant Cell 18:412-421

    Article  PubMed  CAS  Google Scholar 

  • Cliquet J-B, Stewart GR (1993) Ammonia assimilation in Zea mays L. infected with a vesicular- arbuscular mycorrhizal fungus Glomus fasciculatum. Plant Physiol 101:865-871

    CAS  PubMed  Google Scholar 

  • Comas LH, Eissenstat DM, Lakso AN (2000) Assessing root death and root system dynamics in a study of grape canopy pruning. New Phytol 147:171-178

    Article  CAS  Google Scholar 

  • Correia P (2006) The role of mycorrhizae in Mediterranean ecosystem revegetation. PhD thesis, Universidade de Lisboa

    Google Scholar 

  • Cruz C, Green JJ, Watson CA, Wilson F & Martins-Loução MA (2004) Functional aspects of root architecture and mycorrhizal inoculation with respect to nutrient uptake capacity. Mycorrhiza 14:177-184

    Article  CAS  PubMed  Google Scholar 

  • Cruz C, Egsgaard H, Trujillo C, Ambus P, Requena N, Martins-Loução MA, Jakobsen I (2007) Enzymatic evidence for the key role of arginine in nitrogen translocation by arbuscular mycor- rhiza fungi. Plant Physiol. 144:782-792

    Article  CAS  PubMed  Google Scholar 

  • Derner JD, Briske DD (1999) Does a tradeoff exist between morphological and physiological root plasticity? Comparison of grass growth forms. Acta Oecol 20:519-526

    Article  Google Scholar 

  • Douds DD, Pfeffer PE, Shachar-Hill Y (2000) Carbon partitioning, cost and metabolism of arbus- cular mycorrhizae in arbuscular mycorrhizas: physiology and function. In: Kapulnick Y, Douds DD Jr (eds) Arbuscular mycorrhizas: molecular biology and physiology. Kluwer, Dordrecht, pp 107-129

    Google Scholar 

  • Eckstein RL, Karlsson PS (2001) Variation in nitrogen-use efficiency among and within subarctic graminoids and herbs. New Phytol 150:641-651

    Article  Google Scholar 

  • Ferrol N, Gianinazzi S, Gianinazzi-Person V (2002) Arbuscular mycorrhiza induced ATPases and membrane nutrient transport mechanisms. In: Gianinazzi S, Schüepp H, Barea JM, Haselwandter K (eds) Mycorrhizal technology in agriculture: from genes to bioproducts. Birkhäuser, Basel, pp 113-122

    Google Scholar 

  • Fitter AH (1986) The topology and geometry of plant root systems: influence of watering rate on root system topology in Trifolium pratense. Ann Bot 58:91-101

    Google Scholar 

  • Fitter AH (1991) Characteristics and functions of root systems. In: Waisel Y, Eshel A, Kafkafi Y (eds) Plant roots: the hidden half. Dekker, New York, pp 3-25

    Google Scholar 

  • Fitter AH (1991) The ecological significance of root system architecture: an economic approach. In: Atkinson D (ed) Plant root growth: an ecological perspective. Blackwell, Oxford, pp 229-243

    Google Scholar 

  • Fitze D, Wiepning A, Kaldorf M, Ludwig-Muller J (2005) Auxins in the development of an arbuscular mycorrhizal symbiosis in maize. J Plant Physiol 162:1210-1219

    Article  CAS  PubMed  Google Scholar 

  • Flores E, Frías JE, Rubio LM, Herrero A (2005) Photosynthetic nitrate assimilation in cyanobac- teria. Photosyn Res 83:117-133

    Article  CAS  PubMed  Google Scholar 

  • Gao L-L, Delp G, Smith SE (2001) Colonization patterns in a mycorrhiza-defective mutant tomato vary with different arbuscular-mycorrhizal fungi. New Phytol 151:477-491

    Article  Google Scholar 

  • George E, Marschner H, Jakobsen I (1995) Role of arbuscular mycorrhizal fungi in uptake of phosphorus and nitrogen from soil. Crit Rev Biotech 15:257-270

    Article  Google Scholar 

  • Gianinazzi-Pearson V, Smith SE, Gianinazzi S, Smith FA (1991) Enzymatic studies on the metabolism of vesicular-arbuscular mycorrhizas. V. is H+-ATPase a component of ATP-hydro- lysing enzyme activities in plant-fungus interfaces? New Phytol 117:61-57

    Article  CAS  Google Scholar 

  • Gianinazzi-Pearson V, Arnould C, Oufattole M, Arango M, Gianinazzi (2000) Differential activa- tion of H+-ATPase genes by an arbuscular mycorrhizal fungus in root cells of transgenic tobacco. Planta 211:609-613

    Article  CAS  PubMed  Google Scholar 

  • Gonçalves MT (2000) Micorrizas em Populus nigra L. Aspectos citológicos e fisiológicos. PhD thesis, Universidade de Coimbra

    Google Scholar 

  • Gonçalves MT, Martins-Loução MA (1997) The effect of two arbuscular mycorrhiza fungi on growth and phosphorus nutrition of Populus nigra seedlings. In: Ando T, Fujita K, Mae T, Matsumoto H, Mori S, Sekiya J (eds) Plant nutrition for sustainable food production and envi- ronment. Kluwer, Dordrecht, pp 727-732

    Google Scholar 

  • Govindarajulu M, Pfeffer PE, Jin HR, Abubaker J, Douds DD, Allen JW, Bucking H, Lammers PJ, Shachar-Hill Y (2005) Nitrogen transfer in the arbuscular mycorrhizal symbiosis. Nature 435:819-823

    Article  CAS  PubMed  Google Scholar 

  • Graham JH, Abbott LK (2000) Wheat responses to aggressive and non-aggressive arbuscular mycorrhizal fungi. Plant Soil 220:207-218

    Article  CAS  Google Scholar 

  • Graham JH, Duncan LW, Eissenstat, DM (1997) Carbohydrate allocation patterns in citrus geno- types as effected by phosphorus nutrition, mycorrhizal colonisation and mycorrhizal depend- ency. New Phytol 135:335-343

    Article  CAS  Google Scholar 

  • Handley LL, Azcon R, Ruiz Lozano JM, Scrimgeour CM (1999) Plant 15 N associated with arbuscular mycorrhiza, drought and nitrogen deficiency. Rapid Commun Mass Spectrom 13:1320-1324

    Article  CAS  PubMed  Google Scholar 

  • Harris D, Paul EA (1987) Carbon requirements of vesicular-arbuscular mycorrhiza. In: Ecophysiology of VA mycorrhizal plants. CRC, Boca Raton, Fla., pp 93-105

    Google Scholar 

  • Harrison MJ (2005) Signaling in the arbuscular mycorrhizal symbiosis. Annu Rev Microbiol 59:19-42

    Article  CAS  PubMed  Google Scholar 

  • Hawkins HJ, Johansen A, George E (2000) Uptake and transport of organic and inorganic nitrogen by arbuscular mycorrhizal fungi. Plant Soil 226:275-285

    Article  CAS  Google Scholar 

  • Hewitt EJ (1966) Sand and water culture methods used in the study of plant nutrition. Technical communication No. 22. Commonwealth Agricultural Bureaux. Eastern Press, London

    Google Scholar 

  • Hobbie EA, Macko SA, Williams M (2000) Correlations between foliar 15 N and nitrogen con- centrations may indicate plant-mycorrhizal interactions. Oecologia 122:273-283

    Article  Google Scholar 

  • Hooker JE, Black KE, Perry RL, Atkinson D (1995) Arbuscular mycorrhizal fungi induced altera- tion to root longevity of poplar. Plant and Soil 172:327-329

    Article  CAS  Google Scholar 

  • Jakobsen I, Smith SE, Smith FA (2002) Function and diversity of arbuscular mycorrhizae in car- bon and mineral nutrition. In: van der Heijden M, Sanders IR (eds) Mycorrhizal ecology. Springer, Heidelberg, pp 85-92

    Google Scholar 

  • Jin H, Pfeffer PE, Douds DD, Piotrowski E, Lammers PJ, Shachar-Hill Y (2005) The uptake, metabolism, transport and transfer of nitrogen in an arbuscular mycorrhizal symbiosis. New Phytol 168:687-696

    Article  CAS  PubMed  Google Scholar 

  • Johansen A, Jakobsen I, Jensen ES (1992) Hyphal transport of 15N-labelled nitrogen by a vesicular- arbuscular mycorrhizal fungus and its effect on depletion of inorganic soil N. New Phytol 122:281-288

    Article  CAS  Google Scholar 

  • Jones FR (1924) A mycorrhizal fungus in the roots of legumes and some other plants. J Agri Res 24:459-470

    Google Scholar 

  • Kaldorf M, Schmelzer E, Bothe H (1998) Expression of maize and fungal nitrate reductase genes in arbuscular mycorrhiza. Mol Plant Microbe Interact 11:439-448

    Article  CAS  PubMed  Google Scholar 

  • Lambers H, Chapin FS III, Pons TL (1998) Plant physiological ecology. Springer, Heidelberg

    Google Scholar 

  • Li X L, Marschner H and George E (1991) Acquisition of phosphorus and copper by VA-mycor- rhizal hyphae and root-shoot transport in white clover. Plant Soil 136:49-57

    Article  CAS  Google Scholar 

  • Liu J, Blaylock LA, Endre G, Cho J, Town CD, VandenBosch KA Harrison MJ (2003) Transcript profiling coupled with spatial expression analyses reveals genes involved in distinct develop- mental stages of an arbuscular mycorrhizal symbiosis. Plant Cell 15:2106-2123

    Article  CAS  PubMed  Google Scholar 

  • Lohse S, Schliemann W, Ammer C, Kopka J, Strack D, Fester T (2005) Organization and metabo- lism of plastids and mitochondria in arbuscular mycorrhizal roots of Medicago truncatula. Plant Physiol 139:329-340

    Article  CAS  PubMed  Google Scholar 

  • López B, Sabaté S, Gracia CA (2001) Fine-root longevity of Quercus ilex. New Phytol 151:437-441

    Article  Google Scholar 

  • Majdi H, Damm E, Nylund J-E (2001) Longevity of mycorrhizal roots depends on branching order and nutrient availability. New Phytol 150:195-202

    Article  Google Scholar 

  • Martins-Loução MA, Cruz C (1999) The role of N source on carbon balance. In: Srivastava HS, Singh RP (eds) Modes of nitrogen nutrition in higher plants. Oxford and IBM, New Delhi, pp 231-282

    Google Scholar 

  • Martins-Loução MA, Lips SH (2000) Nitrogen in a sustainable ecosystem: a matter of integration. In: Martins-Loução MA, Lips SH (eds) Nitrogen in a sustainable ecosystem: from the cell to the plant. Backhuys, Leiden, pp 415-419

    Google Scholar 

  • Munsell (1975) Soil colour chart. Munsell Colour, Baltimore

    Google Scholar 

  • Paszkowski U (2006) A journey through signaling in arbuscular mycorrhizal symbioses 2006. New Phytol 172:35-46

    Article  CAS  PubMed  Google Scholar 

  • Pirozynski KA, Dalpé Y (1989) The geological history of the Glomaceae with particular reference to mycorrhizal symbiosis. Symbiosis 7:1-36

    Google Scholar 

  • Poorter L (2001) Light-dependent changes in biomass allocation and their importance for growth of rain forest tree species. Funct Ecol 15:113-123

    Article  Google Scholar 

  • Remy W, Taylor TN, Hass H and Kerp H (1994) Four hundred-million-year-old vesicular arbus- cular mycorrhizae. Proc Natl Acad Sci USA 91:11841-11843

    Article  Google Scholar 

  • Robinson D, Hodge A, Fitter A (2003) Constrains on the form and function of root systems. In: de Kroon H, Visser EJW (eds). Root ecology. Ecological studies 168. Springer, Heidelberg, pp 1 - 28

    Google Scholar 

  • Ruiz-Lozano JM (2003) Arbiscular mycorrhiza symbiosis and alleviation of osmotic stress. New perspectives for molecular studies. Mycorrhiza 13:309-317

    Article  PubMed  Google Scholar 

  • Schaarschmidt S, Roitsch T, Hause, B (2006) Arbuscular mycorrhiza induces gene expression of the apoplastic invertase LIN6 in tomato (Lycopersicon esculentum) roots. J Exp Bot 57:4015-4023

    Article  CAS  PubMed  Google Scholar 

  • Schellenbaum L, Berta G, Ravolanirina F, Tisserant B, Gianinazzi S, Fitter AH (1991) Influence of endomycorrhiza infection on root morphology in a micropropagated woody plant species (Vitis vinifera L.). Ann Bot 68:135-141

    Google Scholar 

  • Schliemann W, Schmidt J, Nimtz M, Wray V, Fester T, Strack D (2006) Apocarotenoids from mycorrhizal roots of Ornithogalum umbellatum. Phytochemistry 67:1196-1205

    Article  CAS  PubMed  Google Scholar 

  • Smith FA (2000). Measuring the influence of mycorrhizas. New Phytol 148:4-6

    Article  Google Scholar 

  • Smith FA, Smith SE, Timonen E (2003) Mycorrhizas. In de Kroon H, Visser EJW (eds). Root ecology. Ecological studies 168. Springer, Heidelberg. pp 257- 296.

    Google Scholar 

  • Smith SE, Read, DJ. 1997. Mycorrhizal symbiosis, 2nd edn. Academic, London

    Google Scholar 

  • Smith SE, Smith FA, Jakobsen I (2003) Mycorrhizal fungi can dominate phosphate supply to plants irrespective of growth responses. Plant Physiol 133:16-20

    Article  CAS  PubMed  Google Scholar 

  • Smith SE, Smith FA, Jakobsen I (2004) Functional diversity in arbuscular mycorrhizal (AM) symbioses: the contribution of the mycorrhizal P uptake pathway is not correlated with mycor- rhizal responses in growth or total P uptake. New Phytol 162:511-524

    Article  Google Scholar 

  • Spriggs AC, Stock WD, Dakora FD (2003) Influence of mycorrhizal associations on foliar 15N values of legume and non-legume shrubs and trees in the fynbos of South Africa: implications for estimating N2 fixation using the 15N natural abundance method. Plant Soil 255:495-502

    Article  CAS  Google Scholar 

  • Strack D, Fester T (2006) Isoprenoid metabolism and plastid reorganization in arbuscular mycor- rhizal roots. New Phytol 172:22-34

    Article  CAS  PubMed  Google Scholar 

  • Taylor J, Harrier LA (2003) Expression studies of plant genes differentially expressed in leaf and root tissues of tomato colonised by the arbuscular mycorrhizal fungus Glomus mosseae. Plant Mol Biol 51:619-629

    Article  CAS  PubMed  Google Scholar 

  • Tisserant B, Schellenbaum L, Gianinazzi V, Gianinazzi S, Berta G (1992) Influence of infection by an endomycorrhizal fungus on root development and architecture in Platanus acerifolia. Allionia 30:171-181

    Google Scholar 

  • Toussaint J-P (2007) Investigating physiological changes in the aerial parts of AM plants: what do we know and where should we be heading? Mycorrhiza 17:349-353

    Article  PubMed  Google Scholar 

  • Walch-Liu P, Liu L-H, Remans T, Tester M, Forde BG (2006) Evidence that L-Glutamate can act as an exogenous signal to modulate root growth and branching in Arabidopsis thaliana, Plant Cell 47:1045-1057

    Article  CAS  Google Scholar 

  • Wright SF, Upadhyaya A (1998) A survey of soils for aggregate stability and glomalin, a glyco- protein produced by hyphae of arbuscular mycorrhizal fungi. Plant Soil 198:97-107

    Article  CAS  Google Scholar 

  • Wright SF, Upadhyaya A, Buyer JS (1998) Comparison of N-linked oligosaccharides of glomalin from arbuscular mycorrhizal fungi and soils by capillary electrophoresis. Soil Biol Biochem 13:1853-1857

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristina Cruz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cruz, C., Correia, P., Ramos, A., Carvalho, L., Bago, A., Loução, M.A.M. (2008). Arbuscular Mycorrhiza in Physiological and Morphological Adaptations of Mediterranean Plants. In: Varma, A. (eds) Mycorrhiza. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78826-3_34

Download citation

Publish with us

Policies and ethics