Skip to main content

Colonization of Plant Roots by Pseudomonads and AM Fungi: A Dynamic Phenomenon, Affecting Plant Growth and Health

  • Chapter
Mycorrhiza

Because of their enormously large range of plant hosts and role in plant nutrition, arbuscular mycorrhizal (AM) fungi represent an extraordinarily fascinating field of study. Plant growth promotion effects by AM fungi were described as early as 1900 (Sthal 1900) and several data obtained in the second half of the last century support the idea that these microrganisms can act as biocontrol agents (BCA).

The extent of root colonization is variable in different plants and under different environmental conditions (Giovannetti and Hepper 1985). Some effects of AM colonization on plants have been reported to be dependent on the degree of root colonization, while others have not. Root exudation and pH are modified by the presence of AM fungi (Bansal and Mukerji 1994; Bago et al. 1996), therefore AM fungi can affect the growth of rhizobacteria. Similarly, both root colonization by AM fungi and their effects on the plant can be affected by the presence of rhizobacteria, which can be plant growth-promoting, mycorrhiza helper or biocontrol agents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 349.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akiyama K, Matsuoka H, Hayashi H (2002) Isolation and identification of a phosphate deficiency- induced C-glycosylflavonoid that stimulates arbuscular mycorrhiza formation in melon roots. Mol Plant Microbe Interact 15:334-340

    CAS  PubMed  Google Scholar 

  • Akiyama K, Matsuzaki K, Hayashi H (2005) Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435:824-827

    CAS  PubMed  Google Scholar 

  • Alexander T, Meier R, Toth R, Weber HC (1988) Dynamics of arbuscule development and degen- eration in mycorrhizas of Triticum aestivum L. and Avena sativa L. with reference to Zea mays L. New Phytol 110:363-370

    Google Scholar 

  • Alexander T, Meier R, Toth R, Weber HC (1989) Dynamics of arbuscule development and degen- eration in onion bean and tomato, with reference to vesicular-arbuscular mycorrhizas with grasses. Can J Bot 67:2505-2513

    Google Scholar 

  • Ames S, Reid CPPP, Ingham ER (1984) Rhizosphere bacterial population responses to root colo- nization by a vesicular-arbuscular mycorrhizal fungus. New Phytol 96:555-563

    Google Scholar 

  • Andrade G, Milhara KL, Linderman RG, Bethlenfalay GJ (1997) Bacteria from rhizosphere and hyphosphere soils of different arbuscular-mycorrhizal fungi. Plant Soil 192:71-79

    CAS  Google Scholar 

  • Atkinson D, Berta G, Hooker JE (1994) Impact of root colonization in root architecture, root longev- ity and the formation of growth regulators. In: Gianinazzi S, Schüepp H (eds) Impact of arbuscular mycorrhizas on sustainable agriculture and natural ecosystem. Birkhäuser, Basel, pp 89-99

    Google Scholar 

  • Azcón-Aguilar C, Barea JM (1996) Arbuscular mycorrhizas and biological control of soil-borne plant pathogens - an overview of the mechanisms involved. Mycorrhiza 6:457-464.

    Google Scholar 

  • Azcón R, Ocampo JA (1981) Factors affecting the vesicular-arbuscular infection and mycorrhizal dependency of thirteen wheat cultivar. New Phytol 87:677-685

    Google Scholar 

  • Bago B, Vierheilig H, Piché Y, Azcon-Aguilar C (1996) Nitrate depletion and pH changes induced by the extraradical mycelium of the arbuscular mycorrhizal fungus Glomus intraradi- ces grown in monoxenic culture. New Phytol 133:273-280

    Google Scholar 

  • Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizo- sphere interactions with plants and other organisms. Annu Rev Plant Biol 57:233-266

    CAS  PubMed  Google Scholar 

  • Bakker PAHM, Bakker AW, Marugg JD, Weisbeek PJ, Schippers B (1987) Bioassay for studying the role of siderophores in plant growth stimulation by fluorescent Pseudomonas spp. in short potato rotations. Soil Biol Biochem 19:443-444

    CAS  Google Scholar 

  • Bansal M, Mukerji KG (1994) Positive correlation between VAM-induced changes in root exuda- tion and mycorrhizosphere mycoflora. Mycorrhiza 5:39-44

    Google Scholar 

  • Barea JM, Andrade G, Bianciotto V, Dowling D, Lohrke S, Bonfante P, O’Fara F, Azcon-Aguilar C (1998) Impact on arbuscular mycorrhiza formation of Pseudomonas strains used as inoculants for the biocontrol of soil-borne plant fungal pathogenes. Appl Environ Microbiol 64:2304-2307

    CAS  PubMed  Google Scholar 

  • Barea JM, Gryndle M, Lemanceau P, Schüepp H, Azcon R (2002) The rhizosphere of mycorrhizal plants, 1-18. In: Gianinazzi S, Schuepp H, Barea JM, Haselwandter K (eds) Mycorrhizal technology in agriculture. Birkäuser, Basel

    Google Scholar 

  • Barker S, Tagu D (2000) The roles of auxins and cytokinins in mycorrhizal symbioses. J Plant Growth Regul 19:144-154

    CAS  PubMed  Google Scholar 

  • Baudoin E, Benizri E, Guckert A (2001) Metabolic fingerprinting of microbial communities from distinct maize rhizosphere compartments. Eur J Soil Biol 37:85-93

    Google Scholar 

  • Bécard G, Piché Y (1989) Fungal growth stimulation by CO2 and root exudates in vesicular-arbus- cular mycorrhizal symbiosis. Appl Environ Microbiol 55:2320-2325

    PubMed  Google Scholar 

  • Berta G, Fusconi A, Trotta A, Scannerini S (1990) Morphogenetic modifications induced by the mycorrhizal fungus Glomus strain E3 in the root system of Allium porrum L. New Phytol 114:207-215

    Google Scholar 

  • Berta G, Tagliasacchi AM, Fusconi A, Gerlero D, Trotta A, Scannerini S (1991) The mitotic cycle in root apical meristems of Allium porrum L. is controlled by the endomycorrhizal fungus Glomus sp. strain E3. Protoplasma 161:12-16

    Google Scholar 

  • Berta G, Fusconi A, Trotta A (1993) VA mycorrhizal infection and the morphology and function of root systems. Env Exp Bot 33:159-173

    Google Scholar 

  • Berta G, Trotta A, Fusconi A, Hooker JE, Munro M, Atkinson D, Giovannetti M, Morini S, Fortuna P, Tisserant B, Gianinazzi-Pearson V, Gianinazzi S (1995) Arbuscular mycorrhizal induced changes to plant growth and root system morphology in Prunus cerasifera. Tree Physiol 15:281-293

    PubMed  Google Scholar 

  • Berta G, Fusconi A, Hooker JE (2002) Arbuscular mycorrhizal modifications to plant root sys- tems. In: Gianinazzi S, Schuepp H (eds) Mycorrhizal technology: from genes to bioproducts - achievement and hurdles in arbuscular mycorrhizal research. Birkhauser, Basel, pp 71-101

    Google Scholar 

  • Berta G, Sampò S, Gamalero E, Massa N, Lemanceau P (2005) Suppression of Rhizoctonia root- rot of tomato by Glomus mosseae BEG12 and Pseudomonas fluorescens A6RI is associated with their effect on the pathogen growth and on root morphogenesis. Eur J Plant Pathol 111:279-288

    Google Scholar 

  • Besserer A, Puech-Pagès V, Kiefer P, Gomez-Roldan V, Jauneau A, Roy S, Portais J-C, Roux C, Bécard G, Séjalon-Dumas N (2006) Strigolactones stimulate arbuscular mycorrhizal fungi by activating mitochondria. PLOS Biol 4:1239-1247

    CAS  Google Scholar 

  • Beyerle H (1995) The role of phytohormones in the function and biology of mycorrhizas In: Varma A, Hock B (eds) Mycorrhiza: structure, molecular biology and function. Springer, Heidelberg, pp 365-390

    Google Scholar 

  • Bhowmik SN, Singh CS (2004) Mass multiplication of AM inoculum: effect of plant growth-promoting rhizobacteria and yeast in rapid culturing of Glomus mosseae. Curr Sci India 86:705-709

    Google Scholar 

  • Bianciotto V, Bonfante P (2002) Arbuscular mycorrhizal fungi: a specialised niche for rhizospheric and endocelluar bacteria. Antonie Van Leeuwenhoek 81:365-371

    CAS  PubMed  Google Scholar 

  • Bianciotto V, Minerdi D, Perotto S, Bonfante P (1996) Cellular interactions between arbuscular fungi and rhizosphere bacteria. Protoplasma 193:123-131

    Google Scholar 

  • Bouwmeester HJ, Matusova R, Zhongkui S, Beale MH (2003) Secondary metabolite signalling in host-parasitic plant interactions. Curr Opin Plant Biol 6:358-364

    CAS  PubMed  Google Scholar 

  • Bowen GD, Rovira AD. 1976. Microbial colonization of plant roots. Annu Rev Phytopathol 14:121-144

    Google Scholar 

  • Buée M, Rossignol M, Jauneau A, Ranjeva R, Bécard G (2000) The pre-symbiotic growth of arbuscular mycorrhizal fungi is induced by a branching factor partially purified from plant root exudates. Mol Plant Microbe Interact 13:693-698

    PubMed  Google Scholar 

  • Bull CT, Weller DM, Thomashow LS (1991) Relationship between root colonisation and suppres- sion of Gaeumannomyces graminis var. tritici by Pseudomonas fluorescens strain 2-79. Phytopathology 81:954-959

    Google Scholar 

  • Burr TJ, Schroth MN, Suslow T (1978) Increased potato yields by treatment of seed pieces with specific strain of Pseudomonas fluorescens and P. putida. Phytopathology 68:1377-1383

    Google Scholar 

  • Caetano-Anollés G, Gresshoff PM (1991) Alfalfa controls nodulation during the onset of Rhizobium-induced cortical cell division. Plant Physiol 95:366-373

    PubMed  Google Scholar 

  • Catford JG, Staehelin C, Lerat S, Piché Y, Vierheilig H (2003) Suppression of arbuscular mycor- rhizal colonization and nodulation in split-root systems of alfalfa after pre-inoculation and treatment with Nod factors. J Exp Bot 54:1481-1487

    CAS  PubMed  Google Scholar 

  • Chiatante D, Di Iorio A, Scippa GS (2005) Root responses of Quercus ilex seedlings to drought and fire. Plant Biosyst 139:198-208

    Google Scholar 

  • Chin-A-Woeng TFC, de Priester W, van der Bij A, Lugtenberg BJJ (1997) Description of the col- onization of a gnotobiotic tomato rhizosphere by Pseudomonas fluorescens biocontrol strain WCS365, using scanning electron microscopy. Mol Plant Microbe Interact 10:79-86

    CAS  Google Scholar 

  • Cordier C, Pozo MJ, Barea JM, Gianinazzi S, Gianinazzi-Pearson V (1998) Cell defense responses associated with localized and systemic resistance to Phytophthora parasitica induced in tomato by an arbuscular mycorrhizal fungus. Mol Plant Microbe Interact 11:1017-1028

    CAS  Google Scholar 

  • Danneberg G, Latus C, Zimmer W, Hundeshagen B, Schneider-Poetsc H Hj, Bothe H (1992) Influence of vesicular-arbuscular mycorrhiza on phytohormone balance in maize (Zea mays L.). J Plant Physiol 141:33-39

    Google Scholar 

  • David-Schwartz R, Gadkar V, Wininger S, Bendov R, Galili G, Levy AA, Kapulnik Y (2003) Isolation of a premycorrhizal infection (pmi2) mutant of tomato, resistant to arbuscular mycor- rhizal fungal colonization. Mol Plant Microbe Interact 16:382-388

    CAS  PubMed  Google Scholar 

  • De Weger LA, Kuiper I, van der Bij AJ, Lugtenberg BJJ (1997) Use of lux based procedure to rapidly visualize root colonization by Pseudomonas fluorescens in the wheat rhizosphere. Antonie Van Leeuwenhoek 72:365-372

    PubMed  Google Scholar 

  • Duc G, Trouvelot A, Gianinazzi-Pearson V, Gianinazzi S (1989) First report on non-mycorrhizal plant mutants (Myc-) obtained in pea (Pisum sativum L.) and fababean (Vicia faba L.). Plant Sci 60:215-222

    Google Scholar 

  • Duijff BJ, Gianinazzi-Pearson V, Lemanceau P (1997) Involvement of the outer membrane lipolysaccharides in the endophytic colonization of tomato roots by biocontrol Pseudomonas fluorescens strain WCS417r. New Phytol 135:325-334

    CAS  Google Scholar 

  • Duponnois R, Garbaye J (1991) Effect of dual inoculation of Douglas fir with the ectomyccorhizal fungus Laccaria laccata and mycorrhization helper bacteria (MHB) in two bare-root forest nurseries. Plant Soil 138:169-176

    Google Scholar 

  • Duponnois R, Planchette C (2003) A mycorrhiza helper bacterium enhances ectomycorrhizal and endomychorizal symbiosis of Australian Acacia species. Mycorrhiza 13:85-91

    CAS  PubMed  Google Scholar 

  • Edwards SG, Young JPW, Fitter AH (1998) Interactions between Pseudomonas fluorescens bio- control agents and Glomus mosseae, an arbuscular mycorrhizal fungus, within the rhizosphere. FEMS Microbiol Lett 116:297-303

    Google Scholar 

  • Elias KS, Safir GR (1987) Hyphal elongation of Glomus fasciculatus in response to root exudates. Appl Environ Microbiol 53:1928-1933

    PubMed  CAS  Google Scholar 

  • Esch H., Hundeshagen B., Schneider-Poetsch H, Bothe, H (1994) Demonstration of abscisic acid in spores and hyphae of the arbuscular-mycorrhizal fungus Glomus and the N2-fixing cyano- bacterium Anabaena variabilis. Plant Sci 99:9-16

    CAS  Google Scholar 

  • Fieschi M, Alloatti G, Sacco S, Berta G (1992) Membrane potential hyperpolarisation in vesicular arbuscular mycorrhizae of Allium porrum L.: a non-nutritional long-distance effect of the fun- gus. Protoplasma 168:136-140

    Google Scholar 

  • Fitter AH (2004) Magnolioid roots - hairs, architecture and mycorrhizal dependency. New Phytol 164:15-16.

    Google Scholar 

  • Fitze D, Wiepning A, Kaldorf M, Ludwig-Müller J (2005) Auxins in the development of an arbus- cular mycorrhizal symbiosis in maize. J Plant Physiol 162:1210-1219

    CAS  PubMed  Google Scholar 

  • Frey-Klett P, Garbaye J (2005) Mycorrhiza helper bacteria: a promising model fort he genomic analysis of fungal-bacterial interactions. New Phytol 168:4-8

    CAS  PubMed  Google Scholar 

  • Frey-Klett P, Pierrat JC, Garbaye J (1997) Location and survival of mycorrhiza helper Pseudomonas fluorescens during establishment of ectomycorrhizal symbiosis between Laccaria bicolor and Douglas fir. Appl Environ Microbiol 63:139-144

    CAS  PubMed  Google Scholar 

  • Frey-Klett P, Chavatte M, Clausse M-L, Courrier S, Le Roux C, Raaijmakers J, Martinotti MG, Pierrat J-C, Garbaye J (2005) Ectomyccorhizal symbiosis affects functional diversity of rhizo- sphere fluorescent pseudomonads. New Phytol 165:317-328

    PubMed  Google Scholar 

  • Fujishige NA, Kapadia NN, Hirsh AM (2006) A feeling for the micro-organism: structure on a small scale. Biofilms on plant roots. Bot J Linn Soc 150:79-88

    Google Scholar 

  • Fusconi A, Tagliasacchi AM, Scannerini S, Trotta A, Gnavi E, De Padova S (1994) Root apical meristems of arbuscular mycorrhizae of Allium porrum L. Env Exp Bot 43:181-193

    Google Scholar 

  • Fusconi A, Tagliasacchi AM, Berta G, Trotta A, Brazzaventre S, Ruberti F, Scannerini S (2000) Root apical meristems of Allium porrum L. as affected by arbuscular mycorrhizae and phos- phorus. Protoplasma 214:219-226

    CAS  Google Scholar 

  • Fusconi A, Lingua G, Trotta A, Berta G (2005) Effects of arbuscular mycorrhizal colonization and phosphorus application on nuclear ploidy in Allium porrum plants. Mycorrhiza 15:313-321

    PubMed  Google Scholar 

  • Gadkar V, David-Schwartz R, Nagahashi G, Douds DD, Wininger S, Kapulnik Y (2003) Root exudates of pmi tomato mutant M161 reduces AM fungal proliferation in vitro. FEMS Microbiol Lett 223:193-198

    CAS  PubMed  Google Scholar 

  • Gamalero E, Martinotti MG, Trotta A, Lemanceau P, Berta G (2002) Morphogenetic modifica- tions induced by Pseudomonas fluorescens A6RI and Glomus mosseae BEG12 in the root system of tomato differ according to plant growth conditions. New Phytol 155:293-300

    Google Scholar 

  • Gamalero E, Lingua G, Caprì FG, Fusconi A, Berta G, Lemanceau P (2004a) Colonization pattern of primary tomato roots by Pseudomonas fluorescens A6RI characterized by dilution plating, flow cytometry, fluorescence, confocal and scanning electron microscopy. FEMS Microbiol Ecol 48:79-87

    CAS  PubMed  Google Scholar 

  • Gamalero E, Trotta A, Massa N, Copetta A, Martinotti MG, Berta G (2004b) Impact of two fluo- rescent pseudomonads and an arbuscular mycorrhizal fungus on tomato plant growth, root architecture and P acquisition. Mycorrhiza 14:185-192

    PubMed  Google Scholar 

  • Gamalero E, Lingua G, Tombolini R, Avidano L, Pivato B, Berta G (2005) Colonization of tomato root seedling by Pseudomonas fluorescens 92 rkG5: spatio-temporal dynamics, locali- zation, organization, viability and culturability. Microb Ecol 50:289-297

    PubMed  Google Scholar 

  • Garbaye J (1994) Helper bacteria: a new dimension to the mycorrhizal symbiosis. New Phytol 128:197-210

    Google Scholar 

  • Genre A, Chabaud M, Timmers T, Bonfante P, Barker DG (2005) Arbuscular mycorrhizal fungi elicit a novel intracellular apparatus in Medicago truncatula root epidermal cells before infec- tion. Plant Cell 17:3489-3499

    CAS  PubMed  Google Scholar 

  • Giovannetti M, Hepper CM (1985) Vesicular-arbuscular mycorrhizal infection in Hedysarum coronarium and Onobrychis viciifolia: host-endophyte specificity. Soil Biol Biochem 17:899-900

    Google Scholar 

  • Giovannetti M, Sbrana C, Avio L (2004) Patterns of below-ground plant interconnections estab- lished by means of arbuscular mycorrhizal networks. New Phytol 164:175-181

    Google Scholar 

  • Glick BR (1995) The enhancement of plant growth by free-living bacteria. Can J Microbiol 41:109-117

    CAS  Google Scholar 

  • Graham JH (1982) Effect of citrus root exudates on germination of chlamydospores of the vesicu- lar-arbuscular mycorrhizal fungus, Glomus epigaeum. Mycologia 74:831-835

    Google Scholar 

  • Guenoune D, Galili S, Phillips DA, Volpin H, Chet I, Okon Y, Kapulnik Y (2001) The defense response elicited by the pathogen Rhizoctonia solani is suppressed by colonization of the AM- fungus Glomus intraradices. Plant Sci 160:925-932

    CAS  PubMed  Google Scholar 

  • Haas D, Défago G (2005) Biological control of soil-borne pathogens by fluorescent pseudomon- ads. Nat Rev Microbiol 3:307-319

    CAS  PubMed  Google Scholar 

  • Hansen M, Kragelund L, Nybroe O, Sørensen J (1997) Early colonization of barley roots by Pseudomonas fluorescens studied by immunofluorescence technique and confocal laser scan- ning microscopy. FEMS Microbiol Ecol 23:353-360

    CAS  Google Scholar 

  • Harley JL, Smith SE (1983) Mycorrhizal symbiosis, Academic Press, London

    Google Scholar 

  • Harrier LA, Watson CA (2004) The potential role of arbuscular mycorrhizal (AM) fungi in the bioprotection of plants against soil-borne pathogens in organic and/or other sustainable farm- ing systems. Pest Manage Sci 60:149-157

    CAS  Google Scholar 

  • Hause B, Fester T (2005) Molecular and cell biology of arbuscular mycorrhizal symbiosis. Planta 221:184-196

    CAS  PubMed  Google Scholar 

  • Hause B, Maier W, Miersch O, Kramell R, Strack D (2002) Induction of jasmonate biosynthesis in arbuscular mycorrhizal barley roots. Plant Physiol 130:1213-1220

    CAS  PubMed  Google Scholar 

  • Hawes MC, Brigham LA, Wen F, Woo HH, Zhu Y (1998) Function of root border cells in plant health: pioneers in the rhizosphere. Ann Rev Phytopathol 36:311-327

    CAS  Google Scholar 

  • Humphris SN, Bengough AG, Griffiths BS, Kilham K, Rodger S, Stubbs V, Valentine TA, Young IM (2005) Root cap influences root colonization by Pseudomonas fluorescens SBW25 on maize. FEMS Microbiol Ecol 54:123-130

    CAS  PubMed  Google Scholar 

  • Isayenkov S, Mrosk C, Stenzel I, Strack D, Hause B (2005) Suppression of allene oxide cyclase in hairy roots of Medicago truncatula reduces jasmonate levels and the degree of mycorrhiza- tion with Glomus intraradices. Plant Physiol 139:1401-1410

    CAS  PubMed  Google Scholar 

  • Jaeger III CH, Lindow SE, Miller W, Clark E, Firestone MK (1999) Mapping of sugar and amino acid availability in soil around roots with bacterial sensors of sucrose and tryptophan. Appl Environ Microbiol 65:2685-2690

    CAS  PubMed  Google Scholar 

  • Johansson JF, Paul LR, Finlay RD (2004) Microbial interactions in the mycorrhizosphere and their significance for sustainable agriculture. FEMS Microbiol Ecol 48:1-13

    CAS  PubMed  Google Scholar 

  • Kaldorf M, Ludwig-Müller J (2000) AM fungi affect the root morphology of maize by increasing indole-3-butyric acid biosynthesis. Physiol Plant 109:58-67

    CAS  Google Scholar 

  • Katsuwon J, Zdor R, Anderson AJ (1993) Superoxide dismutase activity in root-colonizing pseu- domonads. Can J Microbiol 39:420-429

    Article  CAS  PubMed  Google Scholar 

  • Larose G, Chenevert R, Moutoglis P, Gagne S, Piché Y, Vierheilig H (2002) Flavonoid levels in roots of Medicago sativa are modulated by the developmental stage of the symbiosis and the root colonizing arbuscular mycorrhizal fungus. J Plant Physiol 159:1329-1339

    CAS  Google Scholar 

  • Latour X, Lemanceau P (1997) Métabolisme carboné et énergétique des Pseudomonas spp. fluo- rescents saprophytes à oxydase positive. Agronomie 17:427-433

    Google Scholar 

  • Latour X, Delorme S, Mirleau P, Lemanceau P (2003) Identification of traits implicated in the rhizosphere competence of fluorescent pseudomonads: description of a strategy based on pop- ulation and model strains studies. Agronomie 23:397-405

    Google Scholar 

  • Lemanceau P, Corberand T, Gardan L, Latour X, Laguerre G, Boeufgras J M and Alabouvette C (1995) Effect of two plant species, flax (Linum usitatissimum L) and tomato (Lycopersicon esculentum Mill), on the diversity of soilborne populations of fluorescent pseudomonads. Appl Environ Microbiol 61:1004-1012

    CAS  PubMed  Google Scholar 

  • Linderman RG (1988) Mycorrhizal interactions with the rhizosphere microflora: the mycorrhizo- sphere effect. Phytopathology 78:366-371

    Google Scholar 

  • Linderman RG (2000) Effects of mycorrhizas on plant tolerances to diseases. In: Kapulnik Y, Douds DD (eds) Arbuscular mycorrhizas: physiology and function. Kluwer, Dordrecht, pp 345-365

    Google Scholar 

  • Lingua G, Sgorbati S, Citterio A, Fusconi A, Trotta A, Gnavi E, Berta G (1999) Arbuscular mycorrhizal colonization delays nucleus senescence in leek root cortical cells. New Phytol 141:161-169

    Google Scholar 

  • López-Bucio J, Cruz-Ramírez A, Herrera-Estrella L (2003) The role of nutrient availability in regulating root architecture. Curr Opin Plant Biol 6:280-287

    PubMed  Google Scholar 

  • Lugtenberg BJJ, Dekkers L, Bloemberg GV (2001) Molecular determinants of rhizosphere colo- nization by Pseudomonas. Annu Rev Phytopathol 39:461-490.

    CAS  PubMed  Google Scholar 

  • Malamy JE (2005) Intrinsic and environmental response pathways that regulate root system archi- tecture. Plant Cell Environ 28:67-77

    CAS  PubMed  Google Scholar 

  • Maloney PE, van Bruggen AHC, Hu S (1997) Bacterial community structure in relation to the carbon environments in lettuce and tomato rhizospheres and in bulk soil. Microbial Ecol 34:109-117

    CAS  Google Scholar 

  • Maron P-A, Ranjard L, Mougel C, Lemanceau P (2008) Metaproteomics: a new approach for studying functional microbial ecology. Microb Ecol (in press)

    Google Scholar 

  • Marsh JF, Schultze M (2001) Analysis of arbuscular mycorrhizas using symbiosis-defective plant mutants. New Phytol 150:525-532

    Google Scholar 

  • Mayo K, Davis RE, Motta J (1986) Stimulation of germination of Glomus versiforme by spore- associated bacteria. Mycologia 78:426-431

    Google Scholar 

  • Meyer JR, Linderman RG (1986a) Response of subterranean clover to dual inoculation with vesicular-arbuscular mycorrhizal fungi and a plant growth-promoting bacterium, Pseudomonas putida. Soil Biol Biochem 18:185-190

    CAS  Google Scholar 

  • Meyer JR, Linderman RG (1986b) Selective influence on populations of rhizosphere or rhizoplane bacteria and actinomycetes by mycorrhizas formed by Glomus fasciculatum. Soil Biol Biochem 18:191-196

    Google Scholar 

  • Mougel C, Offre P, Ranjard L, Corberand T, Gamalero E, Robin C, Lemanceau P (2006) Dynamic of the genetic structure of bacterial and fungal communities at different development stages of Medicago truncatula Gaertn. cv. Jemalong line J5. New Phytol 170:165-175

    CAS  PubMed  Google Scholar 

  • Mucciarelli M, Scannerini S, Bertea CM, Maffei M (2002) An ascomycetous endophyte isolated from Mentha piperita L.: biological features and molecular studies. Mycologia 94:28-39

    Google Scholar 

  • Nagahashi G, Douds DD (2000) Rapid and sensitive bioassay to study signals between root exu- dates and arbuscular mycorrhizal fungi. Biotechnol Techn 13:893-897

    Google Scholar 

  • Nguyen C (2003) Rhizodeposition of organic C by plants: mechanisms and controls. Agronomie 23:375-396

    CAS  Google Scholar 

  • Normander B, Hendriksen NB, Nybroe O (1999) Green fluorescent protein marked Pseudomonas fluorescens: localization, viability and activity in the natural barley rhizosphere. Appl Environ Microbiol 65:4646-4651

    CAS  PubMed  Google Scholar 

  • Offre P, Pivato B, Siblot S, Gamalero E, Corberand T, Lemanceau P, Mougel C (2007) Identification of bacterial groups preferentially associated with mycorrhizal roots of Medicago truncatula. Appl Environ Microbiol 73:913-921

    CAS  PubMed  Google Scholar 

  • Oláh B, Brière C, Bécard G, Dénarié J, Gough C (2005) Nod factors and a diffusible factor from arbuscular mycorrhizal fungi stimulate lateral root formation in Medicago truncatula via the DMI1/DMI2 signalling pathway. Plant J 44:195-207

    PubMed  Google Scholar 

  • O’Sullivan DJ, O’Gara F (1992) Traits of fluorescent Pseudomonas spp. involved in suppression of plant root pathogens. Microbiol Rev 56:662-676

    PubMed  Google Scholar 

  • Paszkowski U, Jakovleva L, Boller T (2006) Maize mutants affected at distinct stages of the arbuscular mycorrhizal symbiosis. Plant J 47:165-173

    CAS  PubMed  Google Scholar 

  • Paulitz TC, Linderman RG (1989) Interactions between fluorescent pseudomonads and VA myc- orrhizal fungi. New Phytol 113:37-45

    Google Scholar 

  • Pinior A, Wyss U, Piché Y, Vierheilig H (1999) Plants colonized by AM fungi regulate further root colonization by AM fungi through altered root exudation. Can J Bot 77:891-897

    Google Scholar 

  • Pozo MJ, Slezack-Deschaumes S, Dumas-Gaudot E (2002) Plant defense responses induced by arbuscular mycorrhizal fungi. In: Gianinazzi S, Schuepp H (eds) Mycorrhizal technology: from genes to bioproducts -achievement and hurdles in arbuscular mycorrhizal research. Birkhauser, Basel, pp 103-112

    Google Scholar 

  • Pozo MJ, Van Loon LC, Pieterse CMJ (2005) Jasmonates - signals in plant-microbe interactions. J Plant Growth Regul 23:211-222

    Google Scholar 

  • Raaijmakers JM, Leeman M, van Oorschot MMP, Van der Sluis I, Schippers B, Bakker PAHM (1995) Dose-response relationships in biological control of fusarium wilt of radish by Pseudomonas spp. Phytopathology 85:1075-1081

    Google Scholar 

  • Raaijmakers JM, Vlami M, de Souza JT (2002) Antibiotic production by bacterial biocontrol agents. Antonie van Leeuwenhoek 81:537-547

    CAS  PubMed  Google Scholar 

  • Ravnskov S, Jakobsen I (1999) Effects of Pseudomonas fluorescens DF57 on growth and P uptake of two arbuscular mycorrhizal fungi in symbiosis with cucumber. Mycorrhiza 8:329-334

    CAS  Google Scholar 

  • Redecker D, Kodner R, Graham LE (2000) Glomalean fungi from the Ordovician. Science 289:1920-1921

    CAS  PubMed  Google Scholar 

  • Remy W, Taylor TN, Hass H, Kerp H (1994) 4-hundred-million-year-old vesicular-arbuscular mycorrhizae. Proc Natl Acad Sci USA 91:11841-11843

    Google Scholar 

  • Rillig MC, Mummey DL, Ramsey PW, Klironomos JN, Gannon JE (2006) Phylogeny of arbus- cular mycorrhizal fungi predicts community composition of symbiosis-associated bacteria. FEMS Microbiol Ecol 57:389-395

    CAS  PubMed  Google Scholar 

  • Salzer P, Boller T (2000) Elicitor-induced reactions in mycorrhizae and their suppression. In: Podila GK, Douds DD (eds) Current advances in mycorrhizae research. American Phytopathological Society Press, St. Paul, Minn., pp 1-10

    Google Scholar 

  • Salzer P, Bonanomi A, Beyer K, Vogeli-Lange R, Aeschbacher RA, Lange J, Wiemken A, Kim D, Cook DR, Boller T (2000) Differential expression of eight chitinase genes in Medicago truncatula roots during mycorrhiza formation, nodulation, and pathogen infection. Mol Plant Microbe Interact 13: 763-777

    CAS  PubMed  Google Scholar 

  • Scannerini S, Fusconi A, Mucciarelli M (2002) The effect of endophytic fungi on host plant mor- phogenesis. In Seckbach J (ed) Symbiosis, cellular origin and life in extreme habitats. Kluwer, Dordrecht, pp 427-447

    Google Scholar 

  • Schippers B, Bakker AW, Bakker PAHM (1987) Interactions of deleterious and beneficial rhizospheric microorganisms and the effect on cropping practices. Annu Rev Phytopathol 25:339-358

    Google Scholar 

  • Selosse MA, Le Tacon F (1998) The land flora: a phototroph-fungus partnership? Trends Ecol Evol 13:15-20

    Google Scholar 

  • Semenov AM, van Bruggen AHC, Zelenev VV (1999) Moving waves of bacterial populations and total organic carbon along roots of wheat. Microb Ecol 37:116-128

    CAS  PubMed  Google Scholar 

  • Shaul-Keinan O, Gadkal V, Ginzberg I, Grunzweig JM, Chet I, Elad Y, Wininger S, Belausov E, Eshed Y, Arzmon N, Ben-Tal Y, Kapulnik Y (2002) Hormone concentrations in tobacco roots change during arbuscular mycorrhizal colonization with Glomus intraradices. New Phytol 154:501-507

    CAS  Google Scholar 

  • Simons M, van der Bij AJ, Brand I, de Weger LA, Wijffelman CA, Lugtenberg BJJ (1996) Gnotobiotic system for studying rhizosphere colonization by plant growth promoting Pseudomonas bacteria. Mol Plant Microbe Interact 9:600-607

    CAS  PubMed  Google Scholar 

  • Smith SE, Read DJ (1997) Mycorrhizal symbiosis, 2nd edn. Academic, London

    Google Scholar 

  • Sood SG (2003) Chemotactic response of plant-growth promoting bacteria towards roots of vesicular-arbuscular mycorrhizal tomato plants. FEMS Microbiol Ecol 45:219-227

    Google Scholar 

  • Staehelin C, Charon C, Boller T, Crespi M, Kondorosi A (2001) Medicago truncatula plants overexpressing the early nodulin gene enod40 exhibit accelerated mycorrhizal colonization and enhanced formation of arbuscules. Proc Natl Acad Sci USA 98:15366-15371

    CAS  PubMed  Google Scholar 

  • Sthal E (1900) Der Sinn der Mycorhizenbildung. Jahrb Wiss Bot 34:539-668

    Google Scholar 

  • Strack D, Fester T (2006) Isoprenoid metabolism and plastid reorganization in arbuscular mycor- rhizal roots. New Phytol 172:22-34

    CAS  PubMed  Google Scholar 

  • Strigul NS, Kravchenko LV (2006) Mathematical modelling of PGPR inoculation into the rhizo- sphere. Environ Modell Softw 21:1158-1171

    Google Scholar 

  • Stumpe M, Carsjens J-G, Stenzel I, Gobel C, Lang I, Pawlowski K, Hause B, Feussner I (2005) Lipid metabolism in arbuscular mycorrhizal roots of Medicago truncatula. Phytochemistry 66:781-791

    CAS  PubMed  Google Scholar 

  • Tamasloukht MB, Séjalon-Delmas N, Kluever A, Jauneau A, Roux C, Becard G, Franken P (2003) Root factors induce mitochondrial-related gene expression and fungal respiration dur- ing the development switch from symbiosis to presymbiosis in the arbuscular mycorrhizal fungus Gigaspora margarita. Plant Physiol 131:1468-1478

    CAS  PubMed  Google Scholar 

  • Tawaraya K, Watanabe S, Yoshida E, Wagatsuma T (1996) Effect of onion (Allium cepa) root exudates on the hyphal growth of Gigaspora margarita. Mycorrhiza 6:57-59

    Google Scholar 

  • Tisserant B, Schellenbaum L, Gianinazzi-Pearson V, Gianinazzi S, Berta G (1992) Influence of infection by an endomycorrhizal fungus on root development and architecture in Platanus acerifolia. Allionia 30:173-183

    Google Scholar 

  • Tisserant B, Gianinazzi S, Gianinazzi-Pearson V (1996) Relationships between lateral root order, arbuscular mycorrhiza development, and the physiological state of the symbiotic fungus in Platanus acerifolia. Can J Bot 74:1947-1955

    Google Scholar 

  • Tombolini R, Van der Gaag DJ, Gerhardson B, Jansson JK (1999) Colonization pattern of the biocontrol strain Pseudomonas chlororaphis MA342 on barley seeds visualized by using green fluorescent protein. Appl Environ Microbiol 65:3674-3680

    CAS  PubMed  Google Scholar 

  • Torelli A, Trotta A, Acerbi L, Arcidiacono G, Berta G, Branca C (2000) IAA and ZR content in leek (Allium porrum L.), as influenced by P nutrition and arbuscular mycorrhizae, in relation to plant development. Plant Soil 226:29-35

    CAS  Google Scholar 

  • Toth R, Miller RM (1984) Dynamics of arbuscule development and degeneration in a Zea mays mycorrhiza. Am J Bot 71:449-460

    Google Scholar 

  • Unge A, Jansson J (2001) Monitoring population size, activity and distribution of gfp-luxAB tagged Pseudomonas fluorescens SBW25 during colonization of wheat. Microb Ecol 41:290-300

    CAS  PubMed  Google Scholar 

  • Van Loon LC, Bakker PAHM, Pieterse CMJ (1998) Systemic resistance induced by rhizosphere bacteria. Ann Rev Plant Physiol 26:453-483

    Google Scholar 

  • Van Peer R, Punte HLM, de Weger LA, Schippers B (1990) Characterization of root surface and endorhizosphere pseudomonads in relation to their colonization of roots. Appl Environ Microbiol 56:2462-2470

    PubMed  Google Scholar 

  • van Veen JA, van Overbeek LS, van Elsas JD (1997) Fate and activity of microorganisms intro- duced into soil. Microbiol Mol Biol Rev 61:121-135

    PubMed  Google Scholar 

  • Varney GT, McCully ME (1991) The branch root of Zea. II. Developmental loss of the apical meristem in field grown roots. New Phytol 118:535-546

    Google Scholar 

  • Vasquez MM, Cesar R, Azcon R, Barea JM (2000) Interactions between arbuscular mycorrhizal fungi and other microbial inoculants (Azospirillum, Pseudomonas, Trichoderma) and their effects on microbial populations and enzyme activities in the rhizosphere of maize plants. Appl Soil Ecol 15:261-272

    Google Scholar 

  • Vierheilig H (2004a) Regulatory mechanisms during the plant-arbuscular mycorrhizal fungus interaction. Can J Bot 82:1166-1176

    CAS  Google Scholar 

  • Vierheilig H (2004b) Further root colonization by arbuscular mycorrhizal fungi in already mycor- rhizal plants is suppressed after a critical level of root colonization. J Plant Physiol 161:339-341

    CAS  PubMed  Google Scholar 

  • Vierheilig H, Piche Y (2002) Signalling in arbuscular mycorrhiza: facts and hypotheses. Adv Exp Med Biol 505:23-39

    CAS  PubMed  Google Scholar 

  • Vierheilig H, Alt M, Mohr U, Boller T, Weimken A (1994) Ethylene biosynthesis and β-1,3-glu- canase in the roots of host and non-host plants of vesicular-arbuscular mycorrhizal fungi after inoculation with Glomus mosseae. J Plant Physiol 143:337-343

    CAS  Google Scholar 

  • Vierheilig H, Garcia-Garrido JM, Wyss U, Piché Y (2000) Systemic suppression of mycorrhizal colonization of barley roots already colonized by AM fungi. Soil Biol Biochem 32:589-595

    CAS  Google Scholar 

  • Vierheilig H, Lerat S, Piche Y (2003) Systemic inhibition of arbuscular mycorrhiza development by root exudates of cucumber plants colonized by Glomus mosseae. Mycorrhiza 13:167-170

    CAS  PubMed  Google Scholar 

  • Volpin H, Elkind Y, Okon Y, Kapulnik Y (1994) A vesicular arbuscular mycorrhizal fungus (Glomus intraradix) induces a defense response in alfalfa roots. Plant Physiol 104:683-689

    CAS  PubMed  Google Scholar 

  • Vosatka M., Gryndler M (1999) Treatment with culture fractions from Pseudomonas putida modi- fies the development of Glomus fistulosum mycorrhiza and the response of potato and maize plants to inoculation. Appl Soil Ecol 11:245-251

    Google Scholar 

  • Walker TS, Bais HP, Grotewold E, Vivanco JM (2003) Root exudation and rhizosphere biology. Plant Physiol 132:44-51

    CAS  PubMed  Google Scholar 

  • Walsh UF, Morrisey JP, O’Gara F (2001) Pseudomonads for biocontrol of phytopathogens: from functional genomics to commercial exploitation. Curr Opin Biotechnol 12:289-295

    CAS  PubMed  Google Scholar 

  • Watnick P, Kolter R (2000) Biofilm, city of microbes. J Bacteriol 182:2675-2679

    CAS  PubMed  Google Scholar 

  • Weller DM (1983) Colonization of wheat roots by a fluorescent pseudomonad suppressive to take- all. Phytopathol 73:1548-1553

    Google Scholar 

  • Weller DM (1988) Biological control of soilborne plant pathogen in the rhizosphere with bacteria. Annu Rev Phytopathol 26:379-407

    Google Scholar 

  • Weller DM, Thomashow LS (1994) Current challenges in introducing beneficial microorganisms into the rhizosphere. In: O’Gara F, Dowling DN, Boesten B (eds) Molecular ecology of rhizo- sphere microorganisms. VCH, Weinheim, pp 1-18

    Google Scholar 

  • Whipps JM (1997) Developments in the biological control of soilborne plant pathogens. Adv Bot Res 26:1-133

    Google Scholar 

  • Whipps JM (2001) Microbial interactions and biocontrol in the rhizosphere. J Exp Bot 52:487-511

    CAS  PubMed  Google Scholar 

  • Xie Z-P, Staehelin C, Vierheilig H, Wiemken A, Jabbouri S, Broughton WJ, Vögeli-Lange R, Boller T (1995) Rhizobial nodulation factors stimulate mycorrhizal colonization of nodulating and nonnodulating soybeans. Plant Physiol 108: 1519-1525

    CAS  PubMed  Google Scholar 

  • Xie Z-P, Müller J, Wiemken A, Broughton WJ, Boller T (1998) Nod factors and tri-iodobenzoic acid stimulate mycorrhizal colonization and affect carbohydrate partitioning in mycorrhizal roots of Lablab purpureus. New Phytol 139: 361-366

    CAS  Google Scholar 

  • Zaidi A, Khan MS (2005) Interactive effect of rhizotrophic microorganisms on growth, yield, and nutrient uptake of wheat. J Plant Nutr 28: 2079-2092

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guido Lingua .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lingua, G., Gamalero, E., Fusconi, A., Lemanceau, P., Berta, G. (2008). Colonization of Plant Roots by Pseudomonads and AM Fungi: A Dynamic Phenomenon, Affecting Plant Growth and Health. In: Varma, A. (eds) Mycorrhiza. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78826-3_29

Download citation

Publish with us

Policies and ethics