Skip to main content

Community Developmental Patterns and Ecological Functions of Ectomycorrhizal Fungi: Implications from Primary Succession

  • Chapter
Mycorrhiza

Ectomycorrhizal fungal (EMF) communities are extremely species-rich in most forest ecosystems (Horton and Bruns 2001). The number of EMF species can often reach more than 100 at even a small landscape scale (Walker et al. 2005; Ishida et al. 2007). The structure of EMF communities in developed forests resembles those of highly diverse plant and animal communities (Magurran 2004).

A variety of disturbances can create bare ground where a biological legacy is absent and primary succession begins (Walker and del Moral 2003). Such disturbances include volcanic activity, glacier retreat, sand dune movement, and mining. Specifically, intensive volcanic activity can abruptly create vast barren deserts completely covered by sterile substrates. These deserts are relatively large and homogeneous habitats relative to those created by other gradually occurring disturbances. Such homogeneous habitats would be ideal for testing fundamental ecological models that could be applied to other ecosystems. Indeed, many ecologists have been attracted to volcanic sites for these reasons (see Walker and del Moral 2003). Until recently, mycorrhizal fungi (especially EMF) have been ignored in studies of volcanic succession. However, data obtained from studies in volcanic systems may lead to a breakthrough in EMF ecology. In this chapter, I focus on EMF in volcanic deserts and use several basic ecological models to provide broadly applicable insights into EMF ecology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 349.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abuzinadah RA, Read DJ (1986) The role of proteins in the nitrogen nutrition of ectomycorrhizal plants .1. utilization of peptides and proteins by ectomycorrhizal fungi. New Phytol 103:481-493

    Article  CAS  Google Scholar 

  • Allen MF, Crisafulli C, Friese CF, Jeakins SL (1992) Re-formation of mycorrhizal symbioses on Mount St Helens, 1980-1990 - interactions of rodents and mycorrhizal fungi. Mycol Res 96:447-453

    Article  Google Scholar 

  • Arnebrant K, Ek H, Finlay RD, Soderstrom B (1993) Nitrogen translocation between Alnus gluti- nosa (L) Gaertn seedlings inoculated with Frankia sp and Pinus contorta Doug Ex-Loud seedlings connected by a common ectomycorrhizal mycelium. New Phytol l24:231-242

    Article  Google Scholar 

  • Arrhenius O (1921) Species and area. J Ecol 9:95-99

    Article  Google Scholar 

  • Ashkannejhad S, Horton TR (2006) Ectomycorrhizal ecology under primary succession on coastal sand dunes: interactions involving Pinus contorta, suilloid fungi and deer. New Phytol 169:345-354

    Article  PubMed  Google Scholar 

  • Baar J, Horton TR, Kretzer AM, Bruns TD (1999) Mycorrhizal colonization of Pinus muricata from resistant propagules after a stand-replacing wildfire. New Phytol 143:409-418

    Article  Google Scholar 

  • Connor EF, McCoy ED (1979) Statistics and biology of the species-area relationship. Am Nat 113:791-833

    Article  Google Scholar 

  • Copley J (2000) Ecology goes underground. Nature 406:452-454.

    Article  CAS  PubMed  Google Scholar 

  • Dickie IA, Koide RT, Steiner KC (2002) Influences of established trees on mycorrhizas, nutrition, and growth of Quercus rubra seedlings. Ecol Monogr 72:505-521

    Article  Google Scholar 

  • Dighton J, Poskitt JM, Howard DM (1986) Changes in occurrence of basidiomycete fruit bodies during forest stand development - with specific reference to mycorrhizal species. Trans Br Mycol Soc 87:163-171

    Article  Google Scholar 

  • Finlay BJ (2002) Global dispersal of free-living microbial eukaryote species. Science 296:1061-1063

    Article  CAS  PubMed  Google Scholar 

  • Fujiyoshi M, Kagawa A, Nakatsubo T, Masuzawa T (2006) Effects of arbuscular mycorrhizal fungi and soil developmental stages on herbaceous plants growing in the early stage of primary succession on Mount Fuji. Ecol Res 21:278-284

    Article  Google Scholar 

  • Gardes M, Bruns TD (1996) Community structure of ectomycorrhizal fungi in a Pinus muricata forest: above- and below-ground views. Can J Bot 74:1572-1583

    Article  Google Scholar 

  • Gotelli NJ (2001) A primer of ecology, 3rd edn. Sinauer, Sunderland, Mass.

    Google Scholar 

  • Gotelli NJ, Colwell RK (2001) Quantifying biodiversity: procedures and pitfalls in the measure- ment and comparison of species richness. Ecol Lett 4:379-391

    Article  Google Scholar 

  • Gray JS, Ugland KI, Lambshead J (2004) On species accumulation and species-area curves. Global Ecol and Biogeol 13:567-568

    Article  Google Scholar 

  • Green J, Bohannan BJM (2006) Spatial scaling of microbial biodiversity. Trends Ecol Evol 21:501-507

    Article  PubMed  Google Scholar 

  • Gryta H, Debaud JC, Effosse A, Gay G, Marmeisse R (1997) Fine-scale structure of populations of the ectomycorrhizal fungus Hebeloma cylindrosporum in coastal sand dune forest ecosys- tems. Mol Ecol 6:353-364

    Article  Google Scholar 

  • Hawksworth DL (1991) The fungal dimension of biodiversity - magnitude, significance, and conservation. Mycol Res 95:641-655

    Article  Google Scholar 

  • He XH, Critchley C, Bledsoe C (2003) Nitrogen transfer within and between plants through com- mon mycorrhizal networks (CMNs). Crit Rev Plant Sci 22:531-567

    Article  Google Scholar 

  • Hirose T, Tateno M (1984) Soil nitrogen patterns induced by colonization of Polygonum cuspida- tum on Mt Fuji. Oecologia 61:218-223

    Article  Google Scholar 

  • Horton TR, Bruns TD (2001) The molecular revolution in ectomycorrhizal ecology: peeking into the black-box. Mol Ecol 10:1855-1871

    Article  CAS  PubMed  Google Scholar 

  • Horton TR, van der Hijden MGA (2007) The role of symbioses in seedling establishment and survival. In: Leck MA, Parker VT, Simpson RL (eds) Seedling ecology and evolution. Cambridge University Press, Cambridge

    Google Scholar 

  • Horton TR, Cázares E, Bruns TD (1998) Ectomycorrhizal, vesicular-arbuscular and dark septate fungal colonization of bishop pine (Pinus muricata) seedlings in the first 5 months of growth after wildfire. Mycorrhiza 8:11-18

    Article  Google Scholar 

  • Horton TR, Bruns TD, Parker VT (1999) Ectomycorrhizal fungi associated with Arctostaphylos contribute to Pseudotsuga menziesii establishment. Can J Bot 77:93-102

    Article  Google Scholar 

  • Ingleby K, Last FT, Mason PA (1985) Vertical-distribution and temperature relations of sheathing mycorrhizas of Betula spp growing on coal spoil. For Ecol Manage 12:279-285

    Article  Google Scholar 

  • Ishida TA, Nara K, Hogetsu T (2007) Host effects on ectomycorrhizal fungal communities: insight from eight host species in mixed conifer-broadleaf forests. New Phytol 174:430-440

    Article  CAS  PubMed  Google Scholar 

  • Jumpponen A (2003) Soil fungal community assembly in a primary successional glacier forefront ecosystem as inferred from rDNA sequence analyses. New Phytol 158:569-578

    Article  Google Scholar 

  • Kennedy PG, Izzo AD, Bruns TD (2003) There is high potential for the formation of common mycorrhizal networks between understorey and canopy trees in a mixed evergreen forest. J Ecol 91:1071-1080

    Article  Google Scholar 

  • Koide RT, Xu B, Sharda J (2005) Contrasting below-ground views of an ectomycorrhizal fungal community. New Phytol 166:251-262

    Article  PubMed  Google Scholar 

  • Koide RT, Courty PE, Garbaye J (2007) Research perspectives on functional diversity in ectomy- corrhizal fungi. New Phytol 174:240-243

    Article  PubMed  Google Scholar 

  • Kytoviita MM, Vestberg M, Tuom J (2003) A test of mutual aid in common mycorrhizal net- works: established vegetation negates benefit in seedlings. Ecol 84:898-906

    Article  Google Scholar 

  • Last FT, Mason PA, Ingleby K, Fleming LV (1984) Succession of fruitbodies of sheathing mycor- rhizal fungi associated with Betula pendula. For Ecol Manage 9:229-234

    Article  Google Scholar 

  • Lian CL, Oishi R, Miyashita N, Nara K, Nakaya H, Wu BY, Zhou ZH, Hogetsu T (2003) Genetic structure and reproduction dynamics of Salix reinii during primary succession on Mount Fuji, as revealed by nuclear and chloroplast microsatellite analysis. Mol Ecol l12:609-618

    Article  Google Scholar 

  • MacArthur RH, Wilson EO (1967) The theory of island biogeography. Princeton University Press, Princeton, N.J.

    Google Scholar 

  • Magurran AE (2004) Measuring biological diversity. Blackwell, Malden, Mass.

    Google Scholar 

  • Matsuda Y, Hijii N (2004) Ectomycorrhizal fungal communities in an Abies firma forest, with special reference to ectomycorrhizal associations between seedlings and mature trees. Can J Bot 82:822-829

    Article  Google Scholar 

  • May RM (1975) Patterns of species abundance and diversity. In: Cody ML, Diamond JM, eds. Ecology and evolution of communities. Harvard University Press, Cambridge, Mass., pp 81-120

    Google Scholar 

  • Nara K (2006a) Ectomycorrhizal networks and seedling establishment during early primary suc-cession. New Phytol 169:169-178

    Article  CAS  PubMed  Google Scholar 

  • Nara K (2006b) Pioneer dwarf willow may facilitate tree succession by providing late colonizers with compatible ectomycorrhizal fungi in a primary successional volcanic desert. New Phytol 171:187-198

    Article  PubMed  Google Scholar 

  • Nara K, Hogetsu T (2004) Ectomycorrhizal fungi on established shrubs facilitate subsequent seedling establishment of successional plant species. Ecology 85:1700-1707

    Article  Google Scholar 

  • Nara K, Nakaya H, Hogetsu T (2003a) Ectomycorrhizal sporocarp succession and production during early primary succession on Mount Fuji. New Phytol l58:193-206

    Google Scholar 

  • Nara K, Nakaya H, Wu BY, Zhou ZH, Hogetsu T (2003b) Underground primary succession of ectomycorrhizal fungi in a volcanic desert on Mount Fuji. New Phytol 159:743-756

    Article  CAS  Google Scholar 

  • Perry DA, Molina R, Amaranthus MP (1987) Mycorrhizae, mycorrhizospheres, and reforestation - current knowledge and research needs. Can J For Res 17:929-940

    Article  Google Scholar 

  • Peter M, Ayer F, Egli S, Honegger R (2001) Above- and below-ground community structure of ectomycorrhizal fungi in three Norway spruce (Picea abies) stands in Switzerland. Can J Bot 79:1134-1151

    Article  Google Scholar 

  • Preston FW (1962) Canonical distribution of commonness and rarity. Ecology 43:185-215, 410-432

    Article  Google Scholar 

  • Rosenzweig ML (1995) Species diversity in space and time. Cambridge University Press, Cambridge

    Google Scholar 

  • Simard SW, Durall DM (2004) Mycorrhizal networks: a review of their extent, function, and importance. Can J Bot 82:1140-1165

    Article  CAS  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic Press, London

    Google Scholar 

  • Taylor AFS (2002) Fungal diversity in ectomycorrhizal communities: sampling effort and species detection. Plant Soil 244:19-28

    Article  CAS  Google Scholar 

  • Titus JH, del Moral R (1998) The role of mycorrhizal fungi and microsites in primary succession on Mount St. Helens. Am J Bot 85:370-375

    Article  Google Scholar 

  • Titus JH, Tsuyuzaki S (2002) Arbuscular mycorrhizal distribution in relation to microsites on recent volcanic substrates of Mt. Koma, Hokkaido, Japan. Mycorrhiza 12:271-275

    Article  PubMed  Google Scholar 

  • Tokeshi M (1993) Species abundance patterns and community structure. In: Advances in ecologi- cal research, vol 24. Academic, London, pp 111-186

    Chapter  Google Scholar 

  • Visser S (1995) Ectomycorrhizal fungal succession in Jack Pine stands following wildfire. New Phytol 129:389-401

    Article  Google Scholar 

  • Wadud MA (2007) Reproduction ecology of pioneer ectomycorrhizal fungi, Laccaria amethystina and L. laccata, in the volcanic desert on Mount Fuji. PhD thesis, The University of Tokyo.

    Google Scholar 

  • Wadud MA, Lian CL, Nara K, Ishida TA, Hogetsu T (2006a) Development of microsatellite markers from an ectomycorrhizal fungus, Laccaria amethystina, by a dual-suppression-PCR technique. Mol Ecol Notes 6:130-132

    Article  CAS  Google Scholar 

  • Wadud MA, Lian CL, Nara K, Hogetsu T (2006b) Isolation and characterization of five microsat- ellite loci in an ectomycorrhizal fungus Laccaria laccata. Mol Ecol Notes 6:700-702

    Article  CAS  Google Scholar 

  • Walker JF, Miller OK, Horton JL (2005) Hyperdiversity of ectomycorrhizal fungus assemblages on oak seedlings in mixed forests in the southern Appalachian Mountains. Mol Ecol 14:829-838

    Article  CAS  PubMed  Google Scholar 

  • Walker LR, del Moral R (2003) Primary succession and ecosystem rehabilitation. Cambridge University Press, Cambridge

    Google Scholar 

  • Whittaker RJ, Fernández-Palacios JM (2007) Island biogeography: ecology, evolution, and con- servation. Oxford University Press, New York

    Google Scholar 

  • Wu BY, Nara K, Hogetsu T (2005) Genetic structure of Cenococcum geophilum populations in primary successional volcanic deserts on Mount Fuji as revealed by microsatellite markers. New Phytol 165:285-293

    Article  CAS  PubMed  Google Scholar 

  • Zhou ZH, Miwa M, Nara K, Wu BY, Nakaya H, Lian CL, Miyashita N, Oishi R, Maruta E, Hogetsu T (2003) Patch establishment and development of a clonal plant, Polygonum cuspida-tum, on Mount Fuji. Mol Ecol 12:1361-1373

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nara, K. (2008). Community Developmental Patterns and Ecological Functions of Ectomycorrhizal Fungi: Implications from Primary Succession. In: Varma, A. (eds) Mycorrhiza. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78826-3_28

Download citation

Publish with us

Policies and ethics