Skip to main content

Arbuscular Mycorrhiza of Endangered Plant Species: Potential Impacts on Restoration Strategies

  • Chapter
Mycorrhiza

A site-specific flora and fauna characterize natural habitats. However, the plant diversity in ecosystems rapidly decreases more than often due to anthropogenic activities. The destruction of habitats leads to a decrease in ecosystem diversity, plant diversity and, in worst cases, to the extinction of plant species (Tilman et al. 1994). About 3% of the described plant species of the world are considered to be threatened, although according to some estimation this value may reach a maximum of 70%. In any case, over the years the number of plant species belonging to different categories of threat (critical, endangered, and vulnerable) is rising continually (IUCN 2006). In nature symbiotic associations between plant roots and mycorrhizal fungi appear to be the norm (Smith and Read 2008). Numerous experiments have shown the positive influence of arbuscular mycorrhizal fungi (AMF) on plant fitness by enhancing the uptake of essential nutrients, the resistance against root pathogens, and the tolerance of environmental stress like drought and heavy metals. The stability and diversity of plant communities have been shown to be influenced by the microbial community in soil including mycorrhizal fungi, and vice versa plant communities affect arbuscular mycorrhizal fungi. These interactions underline the importance of a functioning soil micro-flora including mycorrhizal fungi for a well functioning ecosystem and therefore indicate the potential significance of fungal symbionts of plants for restoration practices (Haselwandter 1997), especially as there seems to be a defined relationship between single types of AMF and their plant hosts (van der Heijden 1998a).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 349.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbott LK, Robson AD (1991) Factors influencing the occurrence of vesicular-arbuscular mycor- rhizas. Agric Ecosyst Environ 35:121-150

    Google Scholar 

  • Abu-Zeyad R, Khan AG, Khoo C (1999) Occurrence of arbuscular mycorrhiza in Castanospermum australe A. Cunn. & C. Fraser and effects on growth and production of castanospermine. Mycorrhiza 9:111-117

    CAS  Google Scholar 

  • Artursson V, Finlay RD, Jansson JK (2006) Interactions between arbuscular mycorrhizal fungi and bacteria and their potential for stimulating plant growth. Environ Microbiol 8:1-10

    CAS  PubMed  Google Scholar 

  • Barea JM, Azcón R, Azcón-Aguilar C (2002) Mycorrhizosphere interactions to improve plant fit- ness and soil quality. Antonie van Leeuwenhoek 81:343-351

    CAS  PubMed  Google Scholar 

  • Barrow JR, Aaltonen RE (2001) Evaluation of the internal colonization of Atriplex canescens (Pursh) Nutt. roots by dark septate fungi and the influence of host physiological activity. Mycorrhiza 11:199-205

    Google Scholar 

  • Bartholdy BA, Berreck M, Haselwandter K (2001) Hydroxamate siderophore synthesis by Phialocephala fortinii, a typical dark septate fungal root endophyte. BioMetals 14:33-42

    CAS  PubMed  Google Scholar 

  • Batty AL, Dixon KW, Brundrett M, Sivasithamparam K (2001) Long-term storage of mycorrhizal fungi and seed as a tool for the conservation of endangered Western Australian terrestrial orchids. Aust J Bot 49:619-628

    Google Scholar 

  • Bever JD, Schultz PA (2005) Mechanisms of arbuscular mycorrhizal mediation of plant-plant interaction. In: Dighton J, White JF, Oudemans P: The fungal community: its organization and role in the ecosystem. Taylor & Francis, Boca Raton, Fla., pp 443-459

    Google Scholar 

  • Bever JD, Wang M (2005) Hyphal fusion and multigenomic structure. Nature 433:E3-E4

    CAS  PubMed  Google Scholar 

  • Bever JD, Schultz PA, Pringle A, Morton JB (2001) Arbuscular mycorrhizal fungi: more diverse than meets the eye, and the ecological tale of why. BioScience 51:923-931

    Google Scholar 

  • Blaszkowski J (1994) Arbuscular fungi and mycorrhizae (Glomales) of the Hel Peninsula, Poland. Mycorrhiza 5:71-88

    Google Scholar 

  • Brundrett M (1991) Mycorrhizas in natural ecosystems. Adv Ecol Res 21:171-313

    Google Scholar 

  • Cázares E, Trappe JM, Jumpponen A (2005) Mycorrhiza-plant colonization patterns on a sub- alpine glacier forefront as a model system of primary succession. Mycorrhiza 15:405-416

    PubMed  Google Scholar 

  • Clapp JP, Young JPW, Merryweather JW, Fitter AH (1995) Diversity of fungal symbionts in arbuscular mycorrhizas from a natural community. New Phytol 130:259-265

    Google Scholar 

  • Clapp JP, Rodriguez A, Dodd JC (2001) Inter- and intra-isolate rRNA large subunit variation in Glomus coronatum spores. New Phytol 149:539-554

    CAS  Google Scholar 

  • Dodd JC (2000) The role of arbuscular mycorrhizal fungi in agro- and natural ecosystems. Outlook Agric 29:63-70

    Google Scholar 

  • Francis R, Read DJ (1995) Mutualism and antagonism in the mycorrhizal symbiosis, with special reference to impacts on plant community structure. Can J Bot 73:S1301-S1309

    Google Scholar 

  • Fuchs B, Haselwandter K (2004) Red list plants: colonization by arbuscular mycorrhizal fungi and dark septate endophytes. Mycorrhiza 14:277-281

    CAS  PubMed  Google Scholar 

  • Gange AC, Brown VK, Sinclair GS (1993) Vesicular-arbuscular mycorrhizal fungi: a determinant of plant community structure in early succession. Funct Ecol 7:616-622

    Google Scholar 

  • Girlanda M, Perotto S, Luppi AM (2006) Molecular diversity and ecological roles of mycorrhiza- associated sterile fungal endophytes in Mediterranean ecosystems. In: Schulz B, Boyle C, Sieber T (eds) Microbial root endophytes. Soil Biology Series. Springer, Heidelberg, pp 207-226

    Google Scholar 

  • Grime JP, Mackey JML, Hillier SH, Read DJ (1987) Floristic diversity in a model system using experimental microcosms. Nature 328:420-422

    Google Scholar 

  • Hart MM, Klironomos JN (2002) Diversity of arbuscular mycorrhizal fungi and ecosystem func- tioning. In: van der Heijden MGA, Sanders IR (eds) Mycorrhizal ecology. Springer, Heidelberg, pp 225-242

    Google Scholar 

  • Haselwandter K (1995) Mycorrhizal fungi: siderophore production. Crit Rev Biotechnol 15:287-291

    CAS  Google Scholar 

  • Haselwandter K (1997) Soil micro-organisms, mycorrhiza, and restoration ecology. In: Urbanska KM, Webb NR, Edwards PJ (eds) Restoration ecology and sustainable development. Cambridge University Press: Cambridge, pp 65-80

    Google Scholar 

  • Haselwandter K, Read DJ (1980) Fungal Associations of roots of dominant and sub-dominant plants in high-alpine vegetation systems with special reference to mycorrhiza. Oecologia 45:57-62

    Google Scholar 

  • Haselwandter K, Read DJ (1982) The significance of a roots-fungus association in two Carex species of high-alpine plant communities. Oecologia 53:352-354

    Google Scholar 

  • Haselwandter K, Winkelmann G (2007) Siderophores of symbiotic fungi. In: S.B.Chincholkar SB, Varma A (eds) Microbial Siderphores. Soil Biology Series Springer: Heidelberg, pp 91-103

    Google Scholar 

  • Helgason T, Daniell TJ, Husband R, Fitter AH, Young JPW (1998) Ploughing up the wood-wide web? Nature 394:431

    CAS  PubMed  Google Scholar 

  • Herrera MA, Salamanca CP, Barea JM (1993) Inoculation of woody legumes with selected arbus- cular mycorrhizal fungi and rhizobia to recover desertified Mediterranean ecosystems. Appl Environ Microbiol 59:129-133

    PubMed  CAS  Google Scholar 

  • Hijri M, Hosny M, van Tuinen D, Dulieu H (1999) Intraspecific ITS polymorphism in Scutellospora castanea (Glomales, Zygomycota) is structured within multinucleate spores. Fungal Genet Biol 26:141-151

    CAS  PubMed  Google Scholar 

  • Husband R, Herre EA, Turner SL, Gallery R, Young JPW (2002) Molecular diversity of arbuscu- lar mycorrhizal fungi and patterns of host association over time and space in a tropical forest. Mol Ecol 11:2669-2678

    CAS  PubMed  Google Scholar 

  • IUCN (2006) 2006 IUCN Red List of threatened species. International Union for Conservation of Nature and Natural Resources. http://www.iucnredlist.org/info/stats [29.12.2006]

  • Jansa J, Mozafar A, Anken T, Ruh R, Sanders IR, Frossard E (2002) Diversity and structure of AMF communities as affected by tillage in a temperate soil. Mycorrhiza 12:225-234

    CAS  PubMed  Google Scholar 

  • Jha DK, Sharma GD, Mishra RR (1992) Ecology of soil microflora and mycorrhizal symbionts in degraded forests at two altitudes. Biol Fertil Soils 12:272-278

    Google Scholar 

  • Johnson D, Vandenkoornhuyse PJ, Leake JR, Gilbert L, Booth RE, Grime JP, Young JPW, Read DJ (2003) Plant communities affect arbuscular mycorrhizal fungal diversity and community composition in grassland microcosms. New Phytol 161:503-515

    Google Scholar 

  • Johnson NC (1998) Responses of Salsola kali and Panicum virgatum to mycorrhizal fungi, phos- phorus and soil organic matter: implications for reclamation. J Appl Ecol 35:86-94

    CAS  Google Scholar 

  • Johnson NC, Tilman D, Wedin D (1992) Plant and soil controls on mycorrhizal fungal communi- ties. Ecology 73:2034-2042

    Google Scholar 

  • Johnson NC, Graham JH, Smith FA (1997) Functioning of mycorrhizal associations along the mutualism-parasitism continuum. New Phytol 135:575-585

    Google Scholar 

  • Jones MD, Smith SE (2004) Exploring functional definitions of mycorrhizas: are mycorrhizas always mutualisms? Can J Bot 82:1089-1109

    Google Scholar 

  • Jumpponen A (2001) Dark septate endopyhtes - are they mycorrhizal? Mycorrhiza 11:207-211

    Google Scholar 

  • Jumpponen A, Trappe JM (1998) Dark septate endophytes: a review of facultative biotrophic root-colonizing fungi. New Phytol 140:295-310

    Google Scholar 

  • Kardol P, Bezemer TM, van der Putten WH (2006) Temporal variation in plant-soil feedback con- trols succession. Ecol Lett 9:1080-1088

    PubMed  Google Scholar 

  • Kapoor R, Chaudhary V, Bhatnagar AK (2007) Effects of arbuscular mycorrhiza and phosphorus application on artemisinin concentration in Artemisia annua L. Mycorrhiza 17:581-587

    CAS  PubMed  Google Scholar 

  • Kjøller R, Rosendahl S (2000) Detection of arbuscular mycorrhizal fungi (Glomales) in roots by nested PCR and SSCP (single stranded conformation polymorphism). Plant Soil 226:189-196

    Google Scholar 

  • Kjøller R, Rosendahl S (2001) Molecular diversity of glomalean (arbuscular mycorrhizal) fungi determined as distinct Glomus specific DNA sequences from roots of field grown peas. Mycol Res 105:1027-1032

    Google Scholar 

  • Klironomos JN (2003) Variation in plant response to native and exotic arbuscular mycorrhizal fungi. Ecology 84:2292-2301

    Google Scholar 

  • Klironomos JN, Hart MM (2002) Colonization of roots by arbuscular mycorrhizal fungi using different sources of inoculum. Mycorrhiza 12:181-184

    PubMed  Google Scholar 

  • Koch AM, Kuhn G, Fontanillas P, Fumagalli L, Goudet J, Sanders IR (2004) High genetic varia- bility and low local diversity in a population of arbuscular mycorrhizal fungi. Proc Natl Acad Sci USA 101:2369-2374

    CAS  PubMed  Google Scholar 

  • Kuhn G, Hijri M, Sanders IR (2001) Evidence for the evolution of multiple genomes in arbuscular mycorrhizal fungi. Nature 414:745-748

    CAS  PubMed  Google Scholar 

  • Lakshmipathy A, Gowda B, Bagyaraj DJ (2003) VA mycorrhizal colonization pattern in RET medicinal plants (Mammea suriga, Saraca asoca, Garcinia spp., Embelia ribes and Calamus sp.) in different parts of Karnataka. Asian J Microbiol Biotechnol Environ Sci 5:505-508

    Google Scholar 

  • Lanfranco L, Wyss P, Marzachi C, Bonfante P (1995) Generation of RAPD-PCR primers for the identification of isolates of Glomus mosseae, an arbuscular mycorrhizal fungus. Mol Ecol 4:61-68

    CAS  PubMed  Google Scholar 

  • Leake JR, Johnson D, Donnelly DP, Muckle GE, Boddy L, Read DJ (2004) Networks of power and influence: the role of mycorrhizal mycelium in controlling plant communities and agroec- osystem functioning. Can J Bot 82:1016-1045

    Google Scholar 

  • Li AR, Guan KY (2007) Mycorrhizal and dark septate endophytic fungi of Pedicularis species from northwest of Yunnan Province, China. Mycorrhiza 17:103-109

    Google Scholar 

  • Merryweather J, Fitter A (1998a) The arbuscular mycorrhizal fungi of Hyacinthoides non-scripta I. Diversity of fungal taxa. New Phytol 138:117-129

    Google Scholar 

  • Merryweather J, Fitter A (1998) The arbuscular mycorrhizal fungi of Hyacinthoides non-scripta II. Seasonal and spatial patterns of fungal populations. New Phytol 138:131-142

    Google Scholar 

  • Miller RM, Carnes BA, Moorman TB (1985) Factors influencing survival of vesicular-arbuscular mycorrhiza propagules during topsoil storage. J Appl Ecol 22:259-266

    Google Scholar 

  • Millner PD, Mulbry WW, Reynolds SL (2001) Taxon-specific oligonucleotide primers for detec- tion of two ancient endomycorrhizal fungi, Glomus occultum and Glomus brasilianum. FEMS Microbiol Lett 196:165-170

    CAS  PubMed  Google Scholar 

  • Moora M, Öpik M, Sen R, Zobel M (2004) Native arbuscular mycorrhizal fungal communities differentially influence the seedling performance of rare and common Pulsatilla species. Funct Ecol 18:554-562

    Google Scholar 

  • Munkvold L, Kjøller R, Vestberg M, Rosendahl S, Jakobsen I (2004) High functional diversity within species of arbuscular mycorrhizal fungi. New Phytol 164:357-364

    Google Scholar 

  • Muthukumar T, Senthilkumar M, Rajangam M, Udaiyan K (2007) Arbuscular mycorrhizal mor- phology and dark septate fungal associations in medicinal and aromatic plants of Western Ghats, Southern India. Mycorrhiza 17:11-24

    Google Scholar 

  • Newsham (1999) Phialophora graminicola, a dark septate fungus, is a beneficial associate of the grass Vulpia ciliata ssp. ambigua. New Phytol 144:517-524

    Google Scholar 

  • O’Connor PJ, Smith SE, Smith FA (2002) Arbuscular mycorrhizas influence plant diversity and community structure in a semiarid herbland. New Phytol 154:209-218

    Google Scholar 

  • Oehl F, Sieverding E, Ineichen K, Ris E-A, Boller T, Wiemken A (2005) Community structure of arbuscular mycorrhizal fungi at different soil depths in extensively and intensively managed agroecosystems. New Phytol 165:273-283

    PubMed  Google Scholar 

  • Oliveira RS, Vosátka M, Dodd JC, Castro PML (2005) Studies on the diversity of arbuscular mycorrhizal fungi and the efficacy of two native isolates in a highly alkaline anthropogenic sediment. Mycorrhiza 16:23-31

    CAS  PubMed  Google Scholar 

  • Öpik M, Moora M, Liira J, Zobel M (2006) Composition of root-colonizing arbuscular mycor- rhizal fungal communities in different ecosystems around the globe. J Ecol 94:778-790

    Google Scholar 

  • Öpik M, Moora M, Liira J, Kõljalg U, Zobel M, Sen R (2003) Divergent arbuscular mycorrhizal fungal communities colonize roots of Pulsatilla spp. in boreal Scots pine forest and grassland soils. New Phytol 160:581-593

    Google Scholar 

  • Panwar J, Tarafdar JC (2006) Distribution of three endangered medicinal plant species and their colonization with arbuscular mycorrhizal fungi. J Arid Environ 65:337-350

    Google Scholar 

  • Pawlowska TE (2005) Genetic processes in arbuscular mycorrhizal fungi. FEMS Microbiol Lett 251:185-192

    CAS  PubMed  Google Scholar 

  • Pawlowska TE, Taylor JW (2004) Organization of genetic variation in individuals of arbuscular mycorrhizal fungi. Nature 427:733-737

    CAS  PubMed  Google Scholar 

  • Pringle A, Bever JD (2002) Divergent phenologies may facilitate the coexistence of arbuscular mycorrhizal fungi in a North Carolina grassland. Am J Bot 89:1439-1446

    Google Scholar 

  • Read DJ, Haselwandter K (1981) Observations on the mycorrhizal status of some alpine plant communities. New Phytol 88:341-352

    Google Scholar 

  • Redecker D (2000) Specific PCR primers to identify arbuscular mycorrhizal fungi within colo- nized roots. Mycorrhiza 10:73-80

    CAS  Google Scholar 

  • Redecker D, Hijri I, Wiemken A (2003) Molecular identification of arbuscular mycorrhizal fungi in roots: perspectives and problems. Folia Geobot 38:113-124

    Google Scholar 

  • Renker C, Heinrichs J, Kaldorf M, Buscot F (2003) Combining nested PCR and restriction digest of the internal transcribed spacer region to characterize arbuscular mycorrhizal fungi on roots from the field. Mycorrhiza 13:191-198

    CAS  PubMed  Google Scholar 

  • Requena N, Jimenez I, Toro M, Barea JM (1997) Interactions between plant-growth-promoting rhizobacteria (PGPR), arbuscular mycorrhizal fungi and Rhizobium spp. in the rhizosphere of Anthyllis cytisoides, a model legume for revegetation in mediterranean semi-arid ecosystems. New Phytol 136:667-677

    Google Scholar 

  • Requena N, Perez-Solis E, Azcón-Aguilar C, Jeffries P, Barea JM (2001) Management of indige- nous plant-microbe symbioses aids restoration of desertified ecosystems. Appl Environ Microbiol 67:495-498

    CAS  PubMed  Google Scholar 

  • Rosendahl S (2008) Communities, populations and individuals of arbuscular mycorrhizal fungi. New Phytol 178:253-266

    PubMed  Google Scholar 

  • Rosendahl S, Taylor JW (1997) Development of multiple genetic markers for studies of genetic variation in arbuscular mycorrhizal fungi using AFLPTM. Mol Ecol 6:821-829

    CAS  Google Scholar 

  • Ruotsalainen AL, Väre H, Vestberg M (2002) Seasonality of root fungal colonization in low- alpine herbs. Mycorrhiza 12:29-36

    CAS  PubMed  Google Scholar 

  • Sailo GL, Bagyaraj DJ (2005) Influence of different AM-fungi on the growth, nutrition and for- skolin content of Coleus forskohlii. Mycol Res 109:795-798.

    CAS  PubMed  Google Scholar 

  • Sanders IR (1999) No sex please, we’re fungi. Nature 399:737-739

    CAS  PubMed  Google Scholar 

  • Sanders IR (2004a) Plant and arbuscular mycorrhizal fungal diversity - are we looking at the rel- evant levels of diversity and are we using the right techniques? New Phyotol 164:415-418

    Google Scholar 

  • Sanders IR (2004b) Intraspecific genetic variation in arbuscular mycorrhizal fungi and its consequences for molecular biology, ecology, and development of inoculum. Can J Bot 82:1057-1062

    CAS  Google Scholar 

  • Sanders IR, Alt M, Groppe K, Boller T, Wiemken A (1995) Identification of ribosomal DNA poly- morphisms among and within spores of the Glomales: application to studies on the genetic diversity of arbuscular mycorrhizal fungal communities. New Phytol 130:419-427

    CAS  Google Scholar 

  • Santos-González JC, Finlay RD, Tehler A (2007) Seasonal dynamics of arbuscular mycorrhizal fungal communities in roots in a seminatural grassland. Appl Environ Microbiol 73:5613-5623

    PubMed  Google Scholar 

  • Saxena AK, Shende R, Grover M (2006) Interactions among beneficial microorganisms. In: Mukerji KG, Manoharachary C, Singh J (eds) Microbial activity in the rhizosphere. Soil Biology Series. Springer, Heidelberg, pp 121-137

    Google Scholar 

  • Schwartz MW, Hoeksema JD, Gehring CA, Johnson NC, Klironomos JN, Abbott LK, Pringle A (2006) The promise and the potential consequences of the global transport of mycorrhizal fungal inoculum. Ecol Lett 9:501-515

    PubMed  Google Scholar 

  • Sieber TN, Grünig CR (2006) Biodiversity of fungal root-endophyte communities and popula- tions, in particular of the dark septate endophyte Phialocephala fortinii s.l. In: Schulz B, Boyle C, Sieber T (eds) Microbial root endophytes. Soil Biology Series. Springer, Heidelberg, pp 107-132

    Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd ed. Academic: New York

    Google Scholar 

  • Strack D, Fester T, Hause B, Schliemann W, Walter MH (2003) Arbuscular mycorrhiza: biologi- cal, chemical and molecular aspects. J Chem Ecol 29:1955-1979

    CAS  PubMed  Google Scholar 

  • Stukenbrock EH, Rosendahl S (2005) Clonal diversity and population genetic structure of arbus- cular mycorrhizal fungi (Glomus spp.) studied by multilocus genotyping of single spores. Mol Ecol 14:743-752

    CAS  PubMed  Google Scholar 

  • Sýkorová Z, Wiemken A, Redecker D (2007) Cooccurring Gentiana verna and Gentiana acaulis and their neighboring plants in two Swiss upper montane meadows harbor distinct arbuscular mycorrhizal fungal communities. Appl Environ Microbiol 73:5426-5434

    PubMed  Google Scholar 

  • Tilman D, May RM, Lehman CL, Nowak MA (1994) Habitat destruction and the extinction debt. Nature 371:65-66

    Google Scholar 

  • Timonen S, Marschner P (2006) Mycorhizosphere concept. In: Mukerji KG, Manoharachary C, Singh J (eds) Microbial activity in the rhizosphere. Soil Biology Series. Springer, Heidelberg, pp 155-172

    Google Scholar 

  • Turnau K, Haselwandter K (2002) Arbuscular mycorrhizal fungi, an essential component of soil microflora in ecosystem restoration. In: Gianinazzi S, Schüepp H, Barea JM, Haselwandter K (eds) Mycorrhizal technology in agriculture: from genes to bioproducts. Birkhäuser, Basel, pp 137-149

    Google Scholar 

  • Turnau K, Ryszka P, Gianinazzi-Pearson V, van Tuinen D (2001) Identification of arbuscular mycorrhizal fungi in soils and roots of plants colonizing zinc wastes in southern Poland. Mycorrhiza 10:169-174

    CAS  Google Scholar 

  • Vallino M, Massa N, Lumini E, Bianciotto V, Berta G, Bonfante P (2006) Assessment of arbuscu- lar mycorrhizal fungal diversity in roots of Solidago gigantea growing in a polluted soil in Northern Italy. Environ Microbiol 8:971-983

    PubMed  Google Scholar 

  • Vandenkoornhuyse P, Leyval C, Bonnin I (2001) High genetic diversity in arbuscular mycorrhizal fungi: evidence for recombination events. Heredity 87:243-253

    CAS  PubMed  Google Scholar 

  • Van der Heijden MGA, Boller T, Wiemken A, Sanders IR (1998) Different arbuscular mycor- rhizal fungal species are potential determinants of plant community structure. Ecology 79:2082-2091

    Article  Google Scholar 

  • Van der Heijden MGA, Klironomos JN, Ursic M, Moutoglis P, Streitwolf-Engel R, Boller T, Wiemken A, Sanders IR (1998b) Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396:69-72

    CAS  Google Scholar 

  • Vergeer P, van den Berg LJL, Baar J, Ouborg NJ, Roelofs JGM (2006) The effect of turf cutting on plant and arbuscular mycorrhizal spore recolonisation: implications for heathland restora- tion. Biol Conserv 129:226-235

    Google Scholar 

  • Vogelsang KM, Reynolds HL, Bever JD (2006) Mycorrhizal fungal identity and richness deter- mine the diversity and productivity of a tallgrass prairie system. New Phytol 172:554-462

    PubMed  Google Scholar 

  • Whitfield L, Richards AJ, Rimmer DL (2004) Relationships between soil heavy metal concentration and mycorrhizal colonisation in Thymus polytrichus in northern England. Mycorrhiza 14:55-62

    CAS  PubMed  Google Scholar 

  • Wubet T, Weiß M, Kottke I, Teketay D, Oberwinkler F (2003) Molecular diversity of arbuscular mycorrhizal fungi in Prunus africana, an endangered medicinal tree species in dry Afromontane forests of Ethiopia. New Phytol 161:517-528

    Google Scholar 

  • Wubet T, Weiß M, Kottke I, Teketay D, Oberwinkler F (2006) Phylogenetic analysis of nuclear small subunit rDNA sequences suggests that the endangered African Pencil Cedar, Juniperus procera, is associated with distinct members of Glomeraceae. Mycol Res 110:1059-1069

    CAS  PubMed  Google Scholar 

  • Young JPW (2008) The genetic diversity of intraterrestrial aliens. New Phytol 178:465-468

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kurt Haselwandter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fuchs, B., Haselwandter, K. (2008). Arbuscular Mycorrhiza of Endangered Plant Species: Potential Impacts on Restoration Strategies. In: Varma, A. (eds) Mycorrhiza. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78826-3_27

Download citation

Publish with us

Policies and ethics